Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Facile One-Step Preparation of Mesoporous Siliceous Phophsomolybdic Acid for Proton Exchange Membrane

Author(s): Hamid Ilbeygi*

Volume 14, Issue 4, 2022

Published on: 22 December, 2021

Page: [387 - 394] Pages: 8

DOI: 10.2174/1876402913666211006155150

Price: $65

Abstract

Background: Proton exchange membrane is an art of PEM fuel cells, developing active materials with robust structure and high proton conductivity has attained huge attention in recent decades amongst researchers.

Aims/Objectives: Here, we have developed a novel approach to prepare a siliceous mesoporous heteropoly acid with high stability in polar media and high proton conductivity to be utilized as proton exchange membrane.

Methods: A highly stable mesoporous siliceous phosphomolybdic acid has been synthesized via a simple self-assembly between Phosphomolybdic Acid (PMA), the polymeric surfactant, and the silica precursor stabilized by KCl molecules as a proton conducting material for proton exchange membrane application.

Results: As prepared, siliceous mesoporous phosphomolybdic acids (mPMA-Si) show a high surface area with a highly crystalline structure; however, the crystallinity is reduced by increasing the silica content. Further analysis proved the Keggin structure remains intact in final materials. mPMA-8 Si shows the highest performance among all the materials studied with proton conductivity of 0.263 S.cm-1 at 70 °C.

Conclusion: As prepared, mPMA-xSi has shown a very high proton conductivity in a range of temperatures, making them a promising material for proton exchange membrane.

Keywords: Mesoporous, proton conductivity, heteropoly acids, soft templating, Keggin unit, proton exchange membrane.

Graphical Abstract
[1]
Ilbeygi, H.; Kim, I.Y.; Kim, M.G.; Cha, W.; Kumar, P.S.M.; Park, D-H.; Vinu, A. Highly crystalline mesoporous phosphotungstic acid: a high-performance electrode material for energy-storage applications. Angew. Chem. Int. Ed. Engl., 2019, 58(32), 10849-10854.
[http://dx.doi.org/10.1002/anie.201901224] [PMID: 31062897]
[2]
Cai, H.; Wu, X.; Wu, Q.; Yan, W. Synthesis and high proton conductive performance of a quaternary vanadomolybdotungstosilicic heter-opoly acid. Dalton Trans., 2016, 45(36), 14238-14242.
[http://dx.doi.org/10.1039/C6DT02727J] [PMID: 27534508]
[3]
Sang, X-G.; Wu, Q-Y. Synthesis and conductivity of high proton conductor H6GeW10V2O40·22H2O. Chem. Lett., 2004, 33(11), 1518-1519.
[http://dx.doi.org/10.1246/cl.2004.1518]
[4]
Klein, M.; Varvak, A.; Segal, E.; Markovsky, B.; Pulidindi, I.N.; Perkas, N.; Gedanken, A. Sonochemical synthesis of HSiW/graphene catalysts for enhanced biomass hydrolysis. Green Chem., 2015, 17(4), 2418-2425.
[http://dx.doi.org/10.1039/C4GC02519A]
[5]
Rocchiccioli-Deltcheff, C.; Amirouche, M.; Hervé, G.; Fournier, M.; Che, M.; Tatibouët, J-M. Structure and catalytic properties of silica-supported polyoxomolybdates: II. Thermal behavior of unsupported and silica-supported 12-molybdosilicic acid catalysts from IR and catalytic reactivity studies. J. Catal., 1990, 126(2), 591-599.
[http://dx.doi.org/10.1016/0021-9517(90)90022-C]
[6]
López-Salinas, E.; Hernández-Cortéz, J.G.; Schifter, I.; Torres-García, E.; Navarrete, J.; Gutiérrez-Carrillo, A.; López, T.; Lottici, P.P.; Bersani, D. Thermal stability of 12-tungstophosphoric acid supported on zirconia. Appl. Catal. A Gen., 2000, 193(1-2), 215-225.
[http://dx.doi.org/10.1016/S0926-860X(99)00431-7]
[7]
Edwards, J.C.; Thiel, C.Y.; Benac, B.; Knifton, J.F.; Solid-state, N.M.R. Catal. Lett., 1998, 51, 77-83.
[http://dx.doi.org/10.1023/A:1019045319788]
[8]
Yusuke, I.; Kazuo, U. Catalysis of heteropoly acids entrapped in activated carbon. Chem. Lett., 1981, 10(5), 663-666.
[http://dx.doi.org/10.1246/cl.1981.663]
[9]
Dai, C.; Zhang, A.; Li, J.; Hou, K.; Liu, M.; Song, C.; Guo, X. Synthesis of yolk-shell HPW@Hollow silicalite-1 for esterification reaction. Chem. Commun. (Camb.), 2014, 50(37), 4846-4848.
[http://dx.doi.org/10.1039/c4cc00693c] [PMID: 24686392]
[10]
Wang, S.; Zhang, Z.; Liu, B.; Li, J. Silica coated magnetic Fe3O4 nanoparticles supported phosphotungstic acid: a novel environmentally friendly catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose. Catal. Sci. Technol., 2013, 3(8), 2104-2112.
[http://dx.doi.org/10.1039/c3cy00223c]
[11]
Pizzio, L.R.; Cáceres, C.V.; Blanco, M.N. Equilibrium adsorption of 11-tungstophosphate anion on different supports. Appl. Surf. Sci., 1999, 151(1-2), 91-101.
[http://dx.doi.org/10.1016/S0169-4332(99)00093-8]
[12]
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350), 548-552.
[http://dx.doi.org/10.1126/science.279.5350.548] [PMID: 9438845]
[13]
Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359, 710-712.
[http://dx.doi.org/10.1038/359710a0]
[14]
Koutsouroubi, E.D.; Papadas, I.T.; Armatas, G.S. Ordered mesoporous polyoxometalate-organosilica frameworks as efficient photocata-lysts of the hydrogen evolution reaction. ChemPlusChem, 2016, 81(9), 947-954.
[http://dx.doi.org/10.1002/cplu.201600199] [PMID: 31968804]
[15]
Sambasivarao, S.V.; Liu, Y.; Horan, J.L.; Seifert, S.; Herring, A.M.; Maupin, C.M. Enhancing proton transport and membrane lifetimes in perfluorosulfonic acid proton exchange membranes: a combined computational and experimental evaluation of the structure and mor-phology changes due to H3PW12O40 doping. J. Phys. Chem. C, 2014, 118(35), 20193-20202.
[http://dx.doi.org/10.1021/jp5059325]
[16]
Ahmed, A.I.; Samra, S.E.; El-Hakam, S.A.; Khder, A.S.; El-Shenawy, H.Z.; El-Yazeed, W.S.A. Characterization of 12-molybdophosphoric acid supported on mesoporous silica MCM-41 and its catalytic performance in the synthesis of hydroquinone diacetate. Appl. Surf. Sci., 2013, 282, 217-225.
[http://dx.doi.org/10.1016/j.apsusc.2013.05.105]
[17]
Zeng, J.; Zhou, Y.; Li, L.; Jiang, S.P. Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells. Phys. Chem. Chem. Phys., 2011, 13(21), 10249-10257.
[http://dx.doi.org/10.1039/c1cp20076c] [PMID: 21541370]
[18]
Zeng, J.; Shen, P.K.; Lu, S.; Xiang, Y.; Li, L.; De Marco, R.; Jiang, S.P. Correlation between proton conductivity, thermal stability and structural symmetries in novel HPW-meso-silica nanocomposite membranes and their performance in direct methanol fuel cells. J. Membr. Sci., 2012, 397-398, 92-101.
[http://dx.doi.org/10.1016/j.memsci.2012.01.018]
[19]
Tang, H.; Pan, M.; Jiang, S.P. Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange mem-branes for direct alcohol fuel cells. Dalton Trans., 2011, 40(19), 5220-5227.
[http://dx.doi.org/10.1039/c1dt10150a] [PMID: 21455522]
[20]
Tang, H.; Pan, M.; Lu, S.; Lu, J.; Jiang, S.P. One-step synthesized HPW/meso-silica inorganic proton exchange membranes for fuel cells. Chem. Commun. (Camb.), 2010, 46(24), 4351-4353.
[http://dx.doi.org/10.1039/c003129a] [PMID: 20464019]
[21]
Lefebvre, F. 31P MAS NMR study of H3PW12O40 supported on silica: formation of ([triple bond, length half m-dash]SiOH2+)(H2PW12O40-). J. Chem. Soc. Chem. Commun., 1992, 756-757.
[http://dx.doi.org/10.1039/C39920000756]
[22]
Ilbeygi, H.; Sawant, D.P.; Ruban, S.M.; Reshma, K.S.; Umbarkar, S.B.; Halligudi, S.B.; Vinu, A. Direct Synthesis of Mesoporous Siliceous Phosphotungstic Acid and Its Superior Catalytic Activity on the Cyclohexylation of Phenol. J. Phys. Chem. C, 2021, 125(12), 6723-6734.
[http://dx.doi.org/10.1021/acs.jpcc.1c01596]
[23]
Ilbeygi, H.; Ismail, A.F.; Mayahi, A.; Nasef, M.M.; Jaafar, J.; Jalalvandi, E. Transport properties and direct methanol fuel cell performance of sulfonated poly (ether ether ketone)/Cloisite/triaminopyrimidine nanocomposite polymer electrolyte membrane at moderate tempera-ture. Separ. Purif. Tech., 2013, 118, 567-575.
[http://dx.doi.org/10.1016/j.seppur.2013.07.044]
[24]
Ilbeygi, H.; Mayahi, A.; Ismail, A.F.; Nasef, M.M.; Jaafar, J.; Ghasemi, M.; Matsuura, T.; Zaidi, S.M.J. Transport properties of SPEEK nanocomposite proton conducting membranes: Optimization of additives content by response surface methodology. J. Taiwan Inst. Chem. Eng., 2014, 45(5), 2265-2279.
[http://dx.doi.org/10.1016/j.jtice.2014.08.005]
[25]
Xu, D.; Zhang, G.; Zhang, N.; Li, H.; Zhang, Y.; Shao, K.; Han, M.; Lew, C.M.; Na, H. Surface modification of heteropoly acid/SPEEK membranes by polypyrrole with a sandwich structure for direct methanol fuel cells. J. Mater. Chem., 2010, 20, 9239-9245.
[http://dx.doi.org/10.1039/c0jm02167a]
[26]
Lakhi, K.S.; Singh, G.; Kim, S.; Baskar, A.V.; Joseph, S.; Yang, J-H.; Ilbeygi, H.; Ruban, S.J.M.; Vu, V.T.H.; Vinu, A. Mesoporous Cu-SBA-15 with highly ordered porous structure and its excellent CO2 adsorption capacity. Microporous Mesoporous Mater., 2018, 267(41), 134-141.
[http://dx.doi.org/10.1016/j.micromeso.2018.03.024]
[27]
Fan, J.; Yu, C.; Gao, F.; Lei, J.; Tian, B.; Wang, L.; Luo, Q.; Tu, B.; Zhou, W.; Zhao, D. Cubic Mesoporous Silica with Large Controllable Entrance Sizes and Advanced Adsorption Properties Angew. Chem. Int. Ed., 2003, 42, 3146-3150.
[28]
Lu, T.; Niu, M.; Hou, Y.; Wu, W.; Ren, S.; Yang, F. Catalytic oxidation of cellulose to formic acid in H5PV2Mo10O40 + H2SO4 aqueous solution with molecular oxygen. Green Chem., 2016, 18(17), 4725-4732.
[http://dx.doi.org/10.1039/C6GC01271J]
[29]
Lu, J.; Tang, H.; Lu, S.; Wu, H.; Jiang, S.P. A novel inorganic proton exchange membrane based on self-assembled HPW-meso-silica for direct methanol fuel cells. J. Mater. Chem., 2011, 21(18), 6668-6676.
[http://dx.doi.org/10.1039/c0jm03695a]
[30]
Taylor, J.M.; Dawson, K.W.; Shimizu, G.K.H. A water-stable metal-organic framework with highly acidic pores for proton-conducting applications. J. Am. Chem. Soc., 2013, 135(4), 1193-1196.
[http://dx.doi.org/10.1021/ja310435e] [PMID: 23305324]
[31]
Peng, Q.; Li, S.; Wang, R.; Liu, S.; Xie, L.; Zhai, J.; Zhang, J.; Zhao, Q.; Chen, X. Lanthanide derivatives of Ta/W mixed-addendum POMs as proton-conducting materials. Dalton Trans., 2017, 46(13), 4157-4160.
[http://dx.doi.org/10.1039/C7DT00091J] [PMID: 28266681]
[32]
Luo, H-B.; Ren, Q.; Wang, P.; Zhang, J.; Wang, L.; Ren, X-M. High proton conductivity achieved by encapsulation of imidazole molecules into proton-conducting MOF-808. ACS Appl. Mater. Interfaces, 2019, 11(9), 9164-9171.
[http://dx.doi.org/10.1021/acsami.9b01075] [PMID: 30747511]
[33]
Ōkawa, H.; Sadakiyo, M.; Otsubo, K.; Yoneda, K.; Yamada, T.; Ohba, M.; Kitagawa, H. Proton conduction study on water confined in channel or layer networks of La(III)M(III)(ox)3·10H2O (M = Cr, Co, Ru, La). Inorg. Chem., 2015, 54(17), 8529-8535.
[http://dx.doi.org/10.1021/acs.inorgchem.5b01176] [PMID: 26280936]
[34]
Chandra, S.; Kundu, T.; Kandambeth, S.; Babarao, R.; Marathe, Y.; Kunjir, S.M.; Banerjee, R. Phosphoric acid loaded azo (-N═N-) based covalent organic framework for proton conduction. J. Am. Chem. Soc., 2014, 136(18), 6570-6573.
[http://dx.doi.org/10.1021/ja502212v] [PMID: 24758195]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy