Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Chlorambucil-Chitosan Nano-Conjugate: An Efficient Agent Against Breast Cancer Targeted Therapy

Author(s): Azadeh Shayegh, Farinaz Khalatbari, Niloofar Zonoubi, Farjad Zarazvand, Fatemeh Monavvari, Hadi Hejazinia, Seyed Esmaeil Sadat Ebrahimi, Morteza Pirali Hamedani, Vahid Ali, Shahin Hadadian, Jafar Farzaneh, Mohammad Seyedhamzeh* and Mehdi Shafiee Ardestani*

Volume 18, Issue 6, 2021

Published on: 27 October, 2020

Page: [721 - 728] Pages: 8

DOI: 10.2174/1567201817666201027122620

Price: $65

Abstract

Background: Discovering new chemotherapy drugs and techniques with the least side effects is one of the most important and challenging issues in recent years worldwide. Chlorambucil is an anticancer drug that is still commonly used as a primary treatment in treating some cancers, but it can cause side effects.

Objective: In this study, we decided to use chitosan as a carrier to enhance the uptake of chlorambucil and reduce the toxicity of this drug.

Methods: After producing this nanoconjugate compound and analysing its structure by FTIR, DLS and AFM analysis, we investigated the therapeutic and biological effects of this nanoconjugate compound on the MCF-7 cell line (breast cancer).

Results: The results of the MTT assay showed that this nanoconjugate compound not only retained its anticancer effect against chlorambucil but also showed less abnormal toxicity. In addition, in vitro cellular uptake by flow cytometry indicated the better uptake final product into the MCF-7 cells. The detection of apoptosis induced cell death was confirmed by RT-PCR.

Conclusion: This study has created a prospective pathway for targeting cancer cells using chitosan.

Keywords: Chlorambucil, breast cancer, chitosan, targeting, nano-conjugate, treatment.

Graphical Abstract
[1]
Gupta, G.P.; Massagué, J. Cancer metastasis: building a framework. Cell, 2006, 127(4), 679-695.
[http://dx.doi.org/10.1016/j.cell.2006.11.001] [PMID: 17110329]
[2]
Tao, Z.; Shi, A.; Lu, C.; Song, T.; Zhang, Z.; Zhao, J. Breast cancer: epidemiology and etiology. Cell Biochem. Biophys., 2015, 72(2), 333-338.
[http://dx.doi.org/10.1007/s12013-014-0459-6] [PMID: 25543329]
[3]
Valastyan, S.; Weinberg, R.A. Tumor metastasis: molecular insights and evolving paradigms. Cell, 2011, 147(2), 275-292.
[http://dx.doi.org/10.1016/j.cell.2011.09.024] [PMID: 22000009]
[4]
BCL2 Protein Family: Essential Regulators of Cell Death; Hetz, C., Ed.; Springer Science & Business Media, 2011, p. 687.
[5]
Misra, R.; Acharya, S.; Sahoo, S.K. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov. Today, 2010, 15(19-20), 842-850.
[http://dx.doi.org/10.1016/j.drudis.2010.08.006] [PMID: 20727417]
[6]
Alexis, F.; Rhee, J.W.; Richie, J.P.; Radovic-Moreno, A.F.; Langer, R.; Farokhzad, O.C. New frontiers in nanotechnology for cancer treatment. In: UROL ONCOL-SEMIN ORI; Elsevier, 2008, 26, pp. (1)74-85.
[http://dx.doi.org/10.1016/j.urolonc.2007.03.017]
[7]
Wang, X.; Yang, L.; Chen, Z.G.; Shin, D.M. Application of nanotechnology in cancer therapy and imaging. CA Cancer J. Clin., 2008, 58(2), 97-110.
[http://dx.doi.org/10.3322/CA.2007.0003] [PMID: 18227410]
[8]
Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. Design and engineering of nanogels for cancer treatment. Drug Discov. Today, 2011, 16(9-10), 457-463.
[http://dx.doi.org/10.1016/j.drudis.2011.03.004] [PMID: 21414419]
[9]
Soni, G.; Yadav, K.S. Nanogels as potential nanomedicine carrier for treatment of cancer: A mini review of the state of the art. Saudi Pharm. J., 2016, 24(2), 133-139.
[http://dx.doi.org/10.1016/j.jsps.2014.04.001] [PMID: 27013905]
[10]
Maya, S.; Sarmento, B.; Nair, A.; Rejinold, N.S.; Nair, S.V.; Jayakumar, R. Smart stimuli sensitive nanogels in cancer drug delivery and imaging: a review. Curr. Pharm. Des., 2013, 19(41), 7203-7218.
[http://dx.doi.org/10.2174/138161281941131219124142] [PMID: 23489200]
[11]
Mojarrad, P.; Zamani, S.; Seyedhamzeh, M.; Omoomi, F.D.; Karimpourfard, N.; Hadadian, S.; Ebrahimi, S.E.S.; Hamedani, M.P.; Farzaneh, J.; Ardestani, M.S. Novel radiopharmaceutical (Technetium-99m)-(DOTA-NHS-ester)-Methionine as a SPECT-CT tumor imaging agent. Eur. J. Pharm. Sci., 2020, 141, 105112.
[http://dx.doi.org/10.1016/j.ejps.2019.105112] [PMID: 31629917]
[12]
Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release, 2008, 126(3), 187-204.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.017] [PMID: 18261822]
[13]
Pautler, M.; Brenner, S. Nanomedicine: promises and challenges for the future of public health. Int. J. Nanomedicine, 2010, 5, 803-809.
[PMID: 21042425]
[14]
Palmer, A.J.; Wallace, H.M. The polyamine transport system as a target for anticancer drug development. Amino Acids, 2010, 38(2), 415-422.
[http://dx.doi.org/10.1007/s00726-009-0400-2] [PMID: 19956998]
[15]
Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release, 2004, 100(1), 5-28.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.010] [PMID: 15491807]
[16]
Wang, X.; Chi, N.; Tang, X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur. J. Pharm. Biopharm., 2008, 70(3), 735-740.
[http://dx.doi.org/10.1016/j.ejpb.2008.07.005] [PMID: 18684400]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy