Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article (Mini-Review)

Recent Research on Flavonoids and their Biomedical Applications

Author(s): Kangmei Wen, Xiaochuan Fang, Junli Yang, Yongfang Yao, Kutty Selva Nandakumar, Mohamed Labib Salem and Kui Cheng*

Volume 28 , Issue 5 , 2021

Published on: 13 July, 2020

Page: [1042 - 1066] Pages: 25

DOI: 10.2174/0929867327666200713184138

Price: $65

Abstract

Flavonoids, commonly found in various plants, are a class of polyphenolic compounds having a basic structural unit of 2-phenylchromone. Flavonoid compounds have attracted much attention due to their wide biological applications. In order to facilitate further research on the biomedical application of flavonoids, we surveyed the literature published on the use of flavonoids in medicine during the past decade, documented the commonly found structures in natural flavonoids, and summarized their pharmacological activities as well as associated mechanisms of action against a variety of health disorders including chronic inflammation, cancer, cardiovascular complications and hypoglycemia. In this mini-review, we provide suggestions for further research on the biomedical applications of flavonoids.

Keywords: Anti-inflammatory, antitumor, antiviral, cardiovascular effects, flavonoid, NF-κB.

[1]
Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: a review. Food Chem., 2018, 261(261), 75-86.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.039] [PMID: 29739608]
[2]
Hassan, A.R.; Amer, K.F.; El-Toumy, S.A.; Nielsen, J.; Christensen, S.B. A new flavonol glycoside and other flavonoids from the aerial parts of Taverniera aegyptiaca. Nat. Prod. Res., 2019, 33(8), 1135-1139.
[http://dx.doi.org/10.1080/14786419.2018.1460834] [PMID: 29663839]
[3]
Kocic, B.; Kitic, D.; Brankovic, S. Dietary flavonoid intake and colorectal cancer risk: evidence from human population studies. J. BUON, 2013, 18(1), 34-43.
[PMID: 23613386]
[4]
Lorenzo, J.M.; Munekata, P.E.S.; Sant’Ana, A.S.; Carvalho, R.B.; Barba, F.J.; Toldra, F.; Mora, L.; Trindade, M.A. Main characteristics of peanut skin and its role for the preservation of meat products. Trends Food Sci. Technol., 2018, 77, 1-10.
[http://dx.doi.org/10.1016/j.tifs.2018.04.007]
[5]
Zamora-Ros, R.; Knaze, V.; Rothwell, J.A.; Hémon, B.; Moskal, A.; Overvad, K.; Tjønneland, A.; Kyrø, C.; Fagherazzi, G.; Boutron-Ruault, M.C.; Touillaud, M.; Katzke, V.; Kühn, T.; Boeing, H.; Förster, J.; Trichopoulou, A.; Valanou, E.; Peppa, E.; Palli, D.; Agnoli, C.; Ricceri, F.; Tumino, R.; de Magistris, M.S.; Peeters, P.H.; Bueno-de-Mesquita, H.B.; Engeset, D.; Skeie, G.; Hjartåker, A.; Menéndez, V.; Agudo, A.; Molina-Montes, E.; Huerta, J.M.; Barricarte, A.; Amiano, P.; Sonestedt, E.; Nilsson, L.M.; Landberg, R.; Key, T.J.; Khaw, K.T.; Wareham, N.J.; Lu, Y.; Slimani, N.; Romieu, I.; Riboli, E.; Scalbert, A. Dietary polyphenol intake in Europe: the European prospective investigation into cancer and nutrition (EPIC) study. Eur. J. Nutr., 2016, 55(4), 1359-1375.
[http://dx.doi.org/10.1007/s00394-015-0950-x] [PMID: 26081647]
[6]
Chen, H.; Lin, H.; Xie, S.; Huang, B.; Qian, Y.; Chen, K.; Niu, Y.; Shen, H-M.; Cai, J.; Li, P.; Leng, J.; Yang, H.; Xia, D.; Wu, Y. Myricetin inhibits NLRP3 inflammasome activation via reduction of ROS-dependent ubiquitination of ASC and promotion of ROS-independent NLRP3 ubiquitination. Toxicol. Appl. Pharmacol., 2019, 365(365), 19-29.
[http://dx.doi.org/10.1016/j.taap.2018.12.019] [PMID: 30594691]
[7]
Hafez, H.S.; Ghareeb, D.A.; Saleh, S.R.; Abady, M.M.; El Demellawy, M.A.; Hussien, H.; Abdel-Monem, N. Neuroprotective effect of ipriflavone against scopolamine-induced memory impairment in rats. Psychopharmacology (Berl.), 2017, 234(20), 3037-3053.
[http://dx.doi.org/10.1007/s00213-017-4690-x] [PMID: 28733814]
[8]
Barik, R.; Sarkar, R.; Biswas, P.; Bera, R.; Sharma, S.; Nath, S.; Karmakar, S.; Sen, T. 5,7-dihydroxy-2-(3-hydroxy-4,5-dimethoxy-phenyl)-chromen-4-one-a flavone from Bruguiera gymnorrhiza displaying anti-inflammatory properties. Indian J. Pharmacol., 2016, 48(3), 304-311.
[http://dx.doi.org/10.4103/0253-7613.182890] [PMID: 27298502]
[9]
Han, H.S.; Shin, J.S.; Lee, S.B.; Park, J.C.; Lee, K.T. Cirsimarin, a flavone glucoside from the aerial part of Cirsium japonicum var. ussuriense (Regel) Kitam. ex Ohwi, suppresses the JAK/STAT and IRF-3 signaling pathway in LPS-stimulated RAW 264.7 macrophages. Chem. Biol. Interact., 2018, 293(293), 38-47.
[http://dx.doi.org/10.1016/j.cbi.2018.07.024] [PMID: 30053449]
[10]
Thangaraj, K.; Vaiyapuri, M. Orientin, a C-glycosyl dietary flavone, suppresses colonic cell proliferation and mitigates NF-κB mediated inflammatory response in 1,2-dimethylhydrazine induced colorectal carcinogenesis. Biomed. Pharmacother., 2017, 96, 1253-1266.
[http://dx.doi.org/10.1016/j.biopha.2017.11.088] [PMID: 29198745]
[11]
Krishnan, M.; Kang, S.C. Vitexin inhibits acrylamide-induced neuroinflammation and improves behavioral changes in Zebrafish larvae. Neurotoxicol. Teratol., 2019, 74106811
[http://dx.doi.org/10.1016/j.ntt.2019.106811] [PMID: 31158445]
[12]
Lim, H.; Min, D.S.; Park, H.; Kim, H.P. Flavonoids interfere with NLRP3 inflammasome activation. Toxicol. Appl. Pharmacol., 2018, 355, 93-102.
[http://dx.doi.org/10.1016/j.taap.2018.06.022] [PMID: 29960001]
[13]
Rea, K.A.; Casaretto, J.A.; Al-Abdul-Wahid, M.S.; Sukumaran, A.; Geddes-McAlister, J.; Rothstein, S.J.; Akhtar, T.A. Biosynthesis of cannflavins A and B from Cannabis sativa L. Phytochemistry, 2019, 164, 162-171.
[http://dx.doi.org/10.1016/j.phytochem.2019.05.009] [PMID: 31151063]
[14]
Hamid, H.K.S.; Ahmed, A.Y.; Simmons, J.R. Postcolonoscopy appendicitis: a review of 57 cases. Surg. Laparosc. Endosc. Percutan. Tech., 2019, 29(5), 328-334.
[http://dx.doi.org/10.1097/SLE.0000000000000718] [PMID: 31425452]
[15]
Butwicka, A.; Olén, O.; Larsson, H.; Halfvarson, J.; Almqvist, C.; Lichtenstein, P.; Serlachius, E.; Frisén, L.; Ludvigsson, J.F. Association of childhood-onset inflammatory bowel disease with risk of psychiatric disorders and suicide attempt. JAMA Pediatr., 2019, 173(10), 969-978.
[http://dx.doi.org/10.1001/jamapediatrics.2019.2662] [PMID: 31424531]
[16]
Sgambato, D.; Gimigliano, F.; De Musis, C.; Moretti, A.; Toro, G.; Ferrante, E.; Miranda, A.; De Mauro, D.; Romano, L.; Iolascon, G.; Romano, M. Bone alterations in inflammatory bowel diseases. World J. Clin. Cases, 2019, 7(15), 1908-1925.
[http://dx.doi.org/10.12998/wjcc.v7.i15.1908] [PMID: 31423424]
[17]
Zhong, X.; Surh, Y.J.; Do, S.G.; Shin, E.; Shim, K.S.; Lee, C.K.; Na, H.K. Baicalein inhibits dextran sulfate sodium-induced mouse colitis. J. Cancer Prev., 2019, 24(2), 129-138.
[http://dx.doi.org/10.15430/JCP.2019.24.2.129] [PMID: 31360692]
[18]
Zhou, K.; Cheng, R.; Liu, B.; Wang, L.; Xie, H.; Zhang, C. Eupatilin ameliorates dextran sulphate sodium-induced colitis in mice partly through promoting AMPK activation. Phytomedicine, 2018, 46(46), 46-56.
[http://dx.doi.org/10.1016/j.phymed.2018.04.033] [PMID: 30097122]
[19]
Bian, Y.; Liu, P.; Zhong, J.; Hu, Y.; Zhuang, S.; Fan, K.; Liu, Z. Quercetin attenuates adhesion molecule expression in intestinal microvascular endothelial cells by modulating multiple pathways. Dig. Dis. Sci., 2018, 63(12), 3297-3304.
[http://dx.doi.org/10.1007/s10620-018-5221-2] [PMID: 30076503]
[20]
Park, J.C.; Yoo, H.; Kim, C.E.; Shim, S.Y.; Lee, M. Hispidulin-7-O-Neohesperidoside from Cirsium japonicum var. ussuriense attenuates the production of inflammatory mediators in LPS-induced raw 264.7 cells and HT-29 cells. Pharmacogn. Mag., 2017, 13(52), 707-711.
[http://dx.doi.org/10.4103/0973-1296.218116] [PMID: 29200737]
[21]
Arab, H.H.; Salama, S.A.; Omar, H.A.; Arafa, S.A.; Maghrabi, I.A. Diosmin protects against ethanol-induced gastric injury in rats: novel anti-ulcer actions. PLoS One, 2015, 10(3)e0122417
[http://dx.doi.org/10.1371/journal.pone.0122417] [PMID: 25821971]
[22]
Agah, S.; Kim, H.; Mertens-Talcott, S.U.; Awika, J.M. Complementary cereals and legumes for health: synergistic interaction of sorghum flavones and cowpea flavonols against LPS-induced inflammation in colonic myofibroblasts. Mol. Nutr. Food Res., 2017, 61(7)1600625
[http://dx.doi.org/10.1002/mnfr.201600625] [PMID: 28155259]
[23]
Lin, S.C.; Shi, L.S.; Ye, Y.L. Advanced molecular knowledge of therapeutic drugs and natural products focusing on inflammatory cytokines in asthma. Cells, 2019, 8(7), 685.
[http://dx.doi.org/10.3390/cells8070685] [PMID: 31284537]
[24]
Peng, H.L.; Huang, W.C.; Cheng, S.C.; Liou, C.J. Fisetin inhibits the generation of inflammatory mediators in interleukin-1β-induced human lung epithelial cells by suppressing the NF-κB and ERK1/2 pathways. Int. Immunopharmacol., 2018, 60, 202-210.
[http://dx.doi.org/10.1016/j.intimp.2018.05.004] [PMID: 29758489]
[25]
Lee, A.Y.; Kang, S.; Park, S.J.; Huang, J.; Im, D.S. Anti-allergic effect of oroxylin A from Oroxylum indicum using in vivo and in vitro experiments. Biomol. Ther. (Seoul), 2016, 24(3), 283-290.
[http://dx.doi.org/10.4062/biomolther.2016.071] [PMID: 27133260]
[26]
Jeon, J.I.; Ko, S.H.; Kim, Y.J.; Choi, S.M.; Kang, K.K.; Kim, H.; Yoon, H.J.; Kim, J.M. The flavone eupatilin inhibits eotaxin expression in an NF-κB-dependent and STAT6-independent manner. Scand. J. Immunol., 2015, 81(3), 166-176.
[http://dx.doi.org/10.1111/sji.12263] [PMID: 25565108]
[27]
Sakoda, C.P.P.; de Toledo, A.C.; Perini, A.; Pinheiro, N.M.; Hiyane, M.I.; Grecco, S.D.S.; de Fátima Lopes Calvo Tibério, I.; Câmara, N.O.S.; de Arruda Martins, M.; Lago, J.H.G.; Righetti, R.F.; Prado, C.M. Sakuranetin reverses vascular peribronchial and lung parenchyma remodeling in a murine model of chronic allergic pulmonary inflammation. Acta Histochem., 2016, 118(6), 615-624.
[http://dx.doi.org/10.1016/j.acthis.2016.07.001] [PMID: 27425653]
[28]
Qiao, H.B.; Li, J.; Lv, L.J.; Nie, B.J.; Lu, P.; Xue, F.; Zhang, Z.M. Eupatilin inhibits microglia activation and attenuates brain injury in intracerebral hemorrhage. Exp. Ther. Med., 2018, 16(5), 4005-4009.
[http://dx.doi.org/10.3892/etm.2018.6699] [PMID: 30344678]
[29]
Shi, X.; Fu, Y.; Zhang, S.; Ding, H.; Chen, J. Baicalin attenuates subarachnoid hemorrhagic brain injury by modulating blood-brain barrier disruption, inflammation and oxidative damage in mice. Oxid. Med. Cell. Longev., 2017, 20171401790
[http://dx.doi.org/10.1155/2017/1401790] [PMID: 28912935]
[30]
Ahmadi, A.; Shadboorestan, A.; Nabavi, S.F.; Setzer, W.N.; Nabavi, S.M. The role of hesperidin in cell signal transduction pathway for the prevention or treatment of cancer. Curr. Med. Chem., 2015, 22(30), 3462-3471.
[http://dx.doi.org/10.2174/092986732230151019103810] [PMID: 26502950]
[31]
Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; Gondal, T.A.; Mubarak, M.S. Luteolin, a flavonoid, as an anticancer agent: a review. Biomed. Pharmacother., 2019, 112108612
[http://dx.doi.org/10.1016/j.biopha.2019.108612] [PMID: 30798142]
[32]
Romagnolo, D.F.; Selmin, O.I. Flavonoids and cancer prevention: a review of the evidence. J. Nutr. Gerontol. Geriatr., 2012, 31(3), 206-238.
[http://dx.doi.org/10.1080/21551197.2012.702534] [PMID: 22888839]
[33]
Idrissi Janati, A.; Karp, I.; Sabri, H.; Emami, E. Is a Fusobacterium nucleatum infection in the colon a risk factor for colorectal cancer? a systematic review and meta-analysis protocol. Syst. Rev., 2019, 8(1), 114.
[http://dx.doi.org/10.1186/s13643-019-1031-7] [PMID: 31077259]
[34]
Banerjee, A.; Chabria, Y.; Kanna, N.R.R.; Gopi, J.; Rowlo, P.; Sun, X-F.; Pathak, S. Role of tumor specific niche in colon cancer progression and emerging therapies by targeting tumor microenvironment. Adv. Exp. Med. Biol., 2019, 1-16.
[http://dx.doi.org/10.1007/5584_2019_355] [PMID: 30969400]
[35]
Chang, H.; Lei, L.; Zhou, Y.; Ye, F.; Zhao, G. Dietary flavonoids and the risk of colorectal cancer: an updated meta-analysis of epidemiological studies. Nutrients, 2018, 10(7)E950
[http://dx.doi.org/10.3390/nu10070950] [PMID: 30041489]
[36]
Yang, Y.; Cai, X.; Yang, J.; Sun, X.; Hu, C.; Yan, Z.; Xu, X.; Lu, W.; Wang, X.; Cao, P. Chemoprevention of dietary digitoflavone on colitis-associated colon tumorigenesis through inducing Nrf2 signaling pathway and inhibition of inflammation. Mol. Cancer, 2014, 13, 48.
[http://dx.doi.org/10.1186/1476-4598-13-48] [PMID: 24602443]
[37]
Wesołowska, O.; Wiśniewski, J.; Sroda-Pomianek, K.; Bielawska-Pohl, A.; Paprocka, M.; Duś, D.; Duarte, N.; Ferreira, M.J.; Michalak, K. Multidrug resistance reversal and apoptosis induction in human colon cancer cells by some flavonoids present in citrus plants. J. Nat. Prod., 2012, 75(11), 1896-1902.
[http://dx.doi.org/10.1021/np3003468] [PMID: 23137376]
[38]
Qiu, P.; Dong, P.; Guan, H.; Li, S.; Ho, C-T.; Pan, M.H.; McClements, D.J.; Xiao, H. Inhibitory effects of 5-hydroxy polymethoxyflavones on colon cancer cells. Mol. Nutr. Food Res., 2010, 54(Suppl. 2), S244-S252.
[http://dx.doi.org/10.1002/mnfr.200900605] [PMID: 20397199]
[39]
Chan, D.S.; Vieira, A.R.; Aune, D.; Bandera, E.V.; Greenwood, D.C.; McTiernan, A.; Navarro Rosenblatt, D.; Thune, I.; Vieira, R.; Norat, T. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann. Oncol., 2014, 25(10), 1901-1914.
[http://dx.doi.org/10.1093/annonc/mdu042] [PMID: 24769692]
[40]
El-Hafeez, A.A.A.; Khalifa, H.O.; Mahdy, E.A.M.; Sharma, V.; Hosoi, T.; Ghosh, P.; Ozawa, K.; Montano, M.M.; Fujimura, T.; Ibrahim, A.R.N.; Abdelhamid, M.A.A.; Pack, S.P.; Shouman, S.A.; Kawamoto, S. Anticancer effect of nor-wogonin (5, 7, 8-trihydroxyflavone) on human triple-negative breast cancer cells via downregulation of TAK1, NF-κB, and STAT3. Pharmacol. Rep., 2019, 71(2), 289-298.
[http://dx.doi.org/10.1016/j.pharep.2019.01.001] [PMID: 30826569]
[41]
Borah, N.; Gunawardana, S.; Torres, H.; McDonnell, S.; Van Slambrouck, S. 5,6,7,3′,4′,5′-Hexamethoxyflavone inhibits growth of triple-negative breast cancer cells via suppression of MAPK and Akt signaling pathways and arresting cell cycle. Int. J. Oncol., 2017, 51(6), 1685-1693.
[http://dx.doi.org/10.3892/ijo.2017.4157] [PMID: 29039514]
[42]
Lewinska, A.; Adamczyk-Grochala, J.; Kwasniewicz, E.; Deregowska, A.; Wnuk, M. Diosmin-induced senescence, apoptosis and autophagy in breast cancer cells of different p53 status and ERK activity. Toxicol. Lett., 2017, 265, 117-130.
[http://dx.doi.org/10.1016/j.toxlet.2016.11.018] [PMID: 27890807]
[43]
Mafuvadze, B.; Benakanakere, I.; Hyder, S.M. Apigenin blocks induction of vascular endothelial growth factor mRNA and protein in progestin-treated human breast cancer cells. Menopause, 2010, 17(5), 1055-1063.
[http://dx.doi.org/10.1097/gme.0b013e3181dd052f] [PMID: 20551847]
[44]
Liu, W.; Wang, X.; Zhu, H.; Duan, Y. Precision tumor medicine and drug targets. Curr. Top. Med. Chem., 2019, 19(17), 1488-1489.
[http://dx.doi.org/10.2174/156802661917190828111130] [PMID: 31592750]
[45]
He, L.; Wu, Y.; Lin, L.; Wang, J.; Wu, Y.; Chen, Y.; Yi, Z.; Liu, M.; Pang, X. Hispidulin, a small flavonoid molecule, suppresses the angiogenesis and growth of human pancreatic cancer by targeting vascular endothelial growth factor receptor 2-mediated PI3K/Akt/mTOR signaling pathway. Cancer Sci., 2011, 102(1), 219-225.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01778.x] [PMID: 21087351]
[46]
Yu, L.; Chen, M.; Zhang, R.; Xu, T. Antitumor effects of glychionide-a flavonoid in human pancreatic carcinoma cells are mediated by activation of apoptotic and autophagic pathways, cell cycle arrest, and disruption of mitochondrial membrane potential. Med. Sci. Monit., 2019, 25, 962-969.
[http://dx.doi.org/10.12659/MSM.913400] [PMID: 30712054]
[47]
Cai, X.; Lu, W.; Yang, Y.; Yang, J.; Ye, J.; Gu, Z.; Hu, C.; Wang, X.; Cao, P. Digitoflavone inhibits IκBα kinase and enhances apoptosis induced by TNFα through downregulation of expression of nuclear factor κB-regulated gene products in human pancreatic cancer cells. PLoS One, 2013, 8(10)e77126
[http://dx.doi.org/10.1371/journal.pone.0077126] [PMID: 24146961]
[48]
Ye, T.; Su, J.; Huang, C.; Yu, D.; Dai, S.; Huang, X.; Chen, B.; Zhou, M. Isoorientin induces apoptosis, decreases invasiveness, and downregulates VEGF secretion by activating AMPK signaling in pancreatic cancer cells. OncoTargets Ther., 2016, 9(9), 7481-7492.
[http://dx.doi.org/10.2147/OTT.S122653] [PMID: 28003763]
[49]
Zhou, R.T.; He, M.; Yu, Z.; Liang, Y.; Nie, Y.; Tai, S.; Teng, C.B. Baicalein inhibits pancreatic cancer cell proliferation and invasion via suppression of NEDD9 expression and its downstream Akt and ERK signaling pathways. Oncotarget, 2017, 8(34), 56351-56363.
[http://dx.doi.org/10.18632/oncotarget.16912] [PMID: 28915595]
[50]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[51]
Gong, W.Y.; Wu, J.F.; Liu, B.J.; Zhang, H.Y.; Cao, Y.X.; Sun, J.; Lv, Y.B.; Wu, X.; Dong, J.C. Flavonoid components in Scutellaria baicalensis inhibit nicotine-induced proliferation, metastasis and lung cancer-associated inflammation in vitro. Int. J. Oncol., 2014, 44(5), 1561-1570.
[http://dx.doi.org/10.3892/ijo.2014.2320] [PMID: 24604573]
[52]
Xu, Z.; Mei, J.; Tan, Y. Baicalin attenuates DDP (cisplatin) resistance in lung cancer by downregulating MARK2 and p-Akt. Int. J. Oncol., 2017, 50(1), 93-100.
[http://dx.doi.org/10.3892/ijo.2016.3768] [PMID: 27878245]
[53]
Yang, Y.; An, R.; Feng, T.; Qin, X.; Zhang, J.; Bo, Y.; Niu, B. Skullcapflavone I suppresses proliferation of human lung cancer cells via down-regulating microRNA-21. Exp. Mol. Pathol., 2019, 110104285
[http://dx.doi.org/10.1016/j.yexmp.2019.104285] [PMID: 31301304]
[54]
Luo, Y.; Yu, H.; Yang, Y.; Tian, W.; Dong, K.; Shan, J.; Ma, X. A flavonoid compound from Chrysosplenium nudicaule inhibits growth and induces apoptosis of the human stomach cancer cell line SGC-7901. Pharm. Biol., 2016, 54(7), 1133-1139.
[http://dx.doi.org/10.3109/13880209.2015.1055634] [PMID: 26428258]
[55]
Cheong, J.H.; Hong, S.Y.; Zheng, Y.; Noh, S.H. Eupatilin inhibits gastric cancer cell growth by blocking STAT3-mediated VEGF expression. J. Gastric Cancer, 2011, 11(1), 16-22.
[http://dx.doi.org/10.5230/jgc.2011.11.1.16] [PMID: 22076197]
[56]
Mohammadian, F.; Pilehvar-Soltanahmadi, Y.; Alipour, S.; Dadashpour, M.; Zarghami, N. Chrysin alters microRNAs expression levels in gastric cancer cells: possible molecular mechanism. Drug Res. (Stuttg.), 2017, 67(9), 509-514.
[http://dx.doi.org/10.1055/s-0042-119647] [PMID: 28628924]
[57]
Mu, J.; Liu, T.; Jiang, L.; Wu, X.; Cao, Y.; Li, M.; Dong, Q.; Liu, Y.; Xu, H. The traditional chinese medicine baicalein potently inhibits gastric cancer cells. J. Cancer, 2016, 7(4), 453-461.
[http://dx.doi.org/10.7150/jca.13548] [PMID: 26918059]
[58]
Shukla, S.; Kanwal, R.; Shankar, E.; Datt, M.; Chance, M.R.; Fu, P.; MacLennan, G.T.; Gupta, S. Apigenin blocks IKKα activation and suppresses prostate cancer progression. Oncotarget, 2015, 6(31), 31216-31232.
[http://dx.doi.org/10.18632/oncotarget.5157] [PMID: 26435478]
[59]
Ganai, S.A. Plant-derived flavone Apigenin: the small-molecule with promising activity against therapeutically resistant prostate cancer. Biomed. Pharmacother., 2017, 85, 47-56.
[http://dx.doi.org/10.1016/j.biopha.2016.11.130] [PMID: 27930986]
[60]
Liu, H.; Xiao, Y.; Xiong, C.; Wei, A.; Ruan, J. Apoptosis induced by a new flavonoid in human hepatoma HepG2 cells involves reactive oxygen species-mediated mitochondrial dysfunction and MAPK activation. Eur. J. Pharmacol., 2011, 654(3), 209-216.
[http://dx.doi.org/10.1016/j.ejphar.2010.12.036] [PMID: 21241688]
[61]
Lin, Y.C.; Hung, C.M.; Tsai, J.C.; Lee, J.C.; Chen, Y.L.; Wei, C.W.; Kao, J.Y.; Way, T.D. Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMP-activated protein kinase (AMPK). J. Agric. Food Chem., 2010, 58(17), 9511-9517.
[http://dx.doi.org/10.1021/jf1019533] [PMID: 20698539]
[62]
Cochran, D.B.; Gray, L.N.; Anderson, K.W.; Dziubla, T.D. Degradable poly(apigenin) polymer inhibits tumor cell adhesion to vascular endothelial cells. J. Biomed. Mater. Res. B. Appl. Biomater., 2016, 104(7), 1438-1447.
[http://dx.doi.org/10.1002/jbm.b.33486] [PMID: 26251070]
[63]
Prasad, V.G.; Kawade, S.; Jayashree, B.S.; Reddy, N.D.; Francis, A.; Nayak, P.G.; Kishore, A.; Nandakumar, K.; Rao, C.M.; Shenoy, R.R. Iminoflavones combat 1,2-dimethyl hydrazine-induced aberrant crypt foci development in colon cancer. BioMed Res. Int., 2014, 2014569130
[http://dx.doi.org/10.1155/2014/569130] [PMID: 24995310]
[64]
Sánchez, M.; Romero, M.; Gómez-Guzmán, M.; Tamargo, J.; Pérez-Vizcaino, F.; Duarte, J. Cardiovascular effects of flavonoids. Curr. Med. Chem., 2019, 26(39), 6991-7034.
[http://dx.doi.org/10.2174/0929867326666181220094721] [PMID: 30569843]
[65]
Park, H.J.; Jung, U.J.; Lee, M.K.; Cho, S.J.; Jung, H.K.; Hong, J.H.; Park, Y.B.; Kim, S.R.; Shim, S.; Jung, J.; Choi, M.S. Modulation of lipid metabolism by polyphenol-rich grape skin extract improves liver steatosis and adiposity in high fat fed mice. Mol. Nutr. Food Res., 2013, 57(2), 360-364.
[http://dx.doi.org/10.1002/mnfr.201200447] [PMID: 23109491]
[66]
Wang, T.T.; Zhou, Z.Q.; Wang, S.; Ji, X.W.; Wu, B.; Sun, L.Y.; Wen, J.F.; Kang, D.G.; Lee, H.S.; Cho, K.W.; Jin, S.N. Mechanisms of vasorelaxation induced by total flavonoids of Euphorbia humifusa in rat aorta. J. Physiol. Pharmacol., 2017, 68(4), 619-628.
[PMID: 29151079]
[67]
Luzak, B.; Kassassir, H.; Rój, E.; Stanczyk, L.; Watala, C.; Golanski, J. Xanthohumol from hop cones (Humulus lupulus L.) prevents ADP-induced platelet reactivity. Arch. Physiol. Biochem., 2017, 123(1), 54-60.
[http://dx.doi.org/10.1080/13813455.2016.1247284] [PMID: 27855519]
[68]
Stainer, A.R.; Sasikumar, P.; Bye, A.P.; Unsworth, A.J.; Holbrook, L.M.; Tindall, M.; Lovegrove, J.A.; Gibbins, J.M. The metabolites of the dietary flavonoid quercetin possess potent antithrombotic activity, and interact with aspirin to enhance antiplatelet effects. TH Open, 2019, 3(3), e244-e258.
[http://dx.doi.org/10.1055/s-0039-1694028] [PMID: 31367693]
[69]
Tian, X.; Chang, L.; Ma, G.; Wang, T.; Lv, M.; Wang, Z.; Chen, L.; Wang, Y.; Gao, X.; Zhu, Y. Delineation of platelet activation pathway of scutellarein revealed its intracellular target as protein kinase C. Biol. Pharm. Bull., 2016, 39(2), 181-191.
[http://dx.doi.org/10.1248/bpb.b15-00511] [PMID: 26581323]
[70]
Bijak, M.; Saluk-Bijak, J. Flavonolignans inhibit the arachidonic acid pathway in blood platelets. BMC Complement. Altern. Med., 2017, 17(1), 396.
[http://dx.doi.org/10.1186/s12906-017-1897-7] [PMID: 28797264]
[71]
Liang, M-L.; Da, X.W.; He, A.D.; Yao, G.Q.; Xie, W.; Liu, G.; Xiang, J.Z.; Ming, Z.Y. Pentamethylquercetin (PMQ) reduces thrombus formation by inhibiting platelet function. Sci. Rep., 2015, 5, 11142.
[http://dx.doi.org/10.1038/srep11142] [PMID: 26059557]
[72]
Li, W.; Zhang, K.; Zhao, Q. Fructooligosaccharide enhanced absorption and anti-dyslipidemia capacity of tea flavonoids in high sucrose-fed mice. Int. J. Food Sci. Nutr., 2019, 70(3), 311-322.
[http://dx.doi.org/10.1080/09637486.2018.1511688] [PMID: 30599796]
[73]
Egert, S.; Bosy-Westphal, A.; Seiberl, J.; Kürbitz, C.; Settler, U.; Plachta-Danielzik, S.; Wagner, A.E.; Frank, J.; Schrezenmeir, J.; Rimbach, G.; Wolffram, S.; Müller, M.J. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br. J. Nutr., 2009, 102(7), 1065-1074.
[http://dx.doi.org/10.1017/S0007114509359127] [PMID: 19402938]
[74]
Wang, Z.Q.; Jiang, X.J. Flavonoid-rich extract of Polygonum capitatum attenuates high-fat diet-induced atherosclerosis development and inflammatory and oxidative stress inhyperlipidemia rats. Eur. J. Inflamm., 2018.
[http://dx.doi.org/10.1177/2058739218772710]
[75]
Cai, L.; Zhang, X.; Hou, M.; Gao, F. Natural flavone tricetin suppresses oxidized LDL-induced endothelial inflammation mediated by Egr-1. Int. Immunopharmacol., 2020, 80106224
[http://dx.doi.org/10.1016/j.intimp.2020.106224] [PMID: 31991371]
[76]
Li, J.; Inoue, J.; Choi, J.M.; Nakamura, S.; Yan, Z.; Fushinobu, S.; Kamada, H.; Kato, H.; Hashidume, T.; Shimizu, M.; Sato, R. Identification of the flavonoid luteolin as a repressor of the transcription factor hepatocyte nuclear factor 4α. J. Biol. Chem., 2015, 290(39), 24021-24035.
[http://dx.doi.org/10.1074/jbc.M115.645200] [PMID: 26272613]
[77]
Zhang, M.; Xie, Z.; Gao, W.; Pu, L.; Wei, J.; Guo, C. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats. Nutr. Res., 2016, 36(3), 271-279.
[http://dx.doi.org/10.1016/j.nutres.2015.11.019] [PMID: 26923514]
[78]
Jiang, G.B.; Xu, L.; Cao, F.L.; Li, G.Z.; Lei, M. Electron paramagnetic resonance (EPR) studies on free radical scavenging capacity of EGB and EGB cigarette. Guangpuxue Yu Guangpu Fenxi, 2017, 37(4), 1322-1328.
[http://dx.doi.org/10.3964/j.issn.1000-0593(2017)04-1322-07]
[79]
Panat, N.A.; Maurya, D.K.; Ghaskadbi, S.S.; Sandur, S.K. Troxerutin, a plant flavonoid, protects cells against oxidative stress-induced cell death through radical scavenging mechanism. Food Chem., 2016, 194, 32-45.
[http://dx.doi.org/10.1016/j.foodchem.2015.07.078] [PMID: 26471524]
[80]
Chen, G.L.; Fan, M.X.; Wu, J.L.; Li, N.; Guo, M.Q. Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule. Food Chem., 2019, 277, 706-712.
[http://dx.doi.org/10.1016/j.foodchem.2018.11.040] [PMID: 30502207]
[81]
Lilamand, M.; Kelaiditi, E.; Guyonnet, S.; Antonelli Incalzi, R.; Raynaud-Simon, A.; Vellas, B.; Cesari, M. Flavonoids and arterial stiffness: promising perspectives. Nutr. Metab. Cardiovasc. Dis., 2014, 24(7), 698-704.
[http://dx.doi.org/10.1016/j.numecd.2014.01.015] [PMID: 24656854]
[82]
Bo, J.; Zhishan, D. Flavonoids from Carya cathayensis Sarg. leaves inhibit carotid artery lesion formation induced by low blood flow. Biomed. Pharmacother., 2017, 94, 88-92.
[http://dx.doi.org/10.1016/j.biopha.2017.07.076] [PMID: 28755577]
[83]
McPhail, L.D.; McIntyre, D.J.O.; Ludwig, C.; Kestell, P.; Griffiths, J.R.; Kelland, L.R.; Robinson, S.P. Rat tumor response to the vascular-disrupting agent 5,6-dimethylxanthenone-4-acetic acid as measured by dynamic contrast-enhanced magnetic resonance imaging, plasma 5-hydroxyindoleacetic acid levels, and tumor necrosis. Neoplasia, 2006, 8(3), 199-206.
[http://dx.doi.org/10.1593/neo.05739] [PMID: 16611413]
[84]
Liu, C.M.; Ma, J.Q.; Lou, Y. Chronic administration of troxerutin protects mouse kidney against D-galactose-induced oxidative DNA damage. Food Chem. Toxicol., 2010, 48(10), 2809-2817.
[http://dx.doi.org/10.1016/j.fct.2010.07.011] [PMID: 20633594]
[85]
Liau, P.R.; Wu, M.S.; Lee, C.K. Inhibitory effects of Scutellaria baicalensis root extract on linoleic acid hydroperoxide-induced lung mitochondrial lipid peroxidation and antioxidant activities. Molecules, 2019, 24(11), 2143.
[http://dx.doi.org/10.3390/molecules24112143] [PMID: 31174346]
[86]
Alnumair, K.S.; Veeramani, C.; Govindasamy, C.; Alsaif, M.A. Galangin, a dietary flavonoid reduces mitochondrial damage in streptozotocin-induced diabetic rats. Heart, 2017, 103(5), 143.
[http://dx.doi.org/10.1136/heartjnl-2017-311726.217]
[87]
Li, F.; Zong, J.; Zhang, H.; Zhang, P.; Xu, L.; Liang, K.; Yang, L.; Yong, H.; Qian, W. Orientin reduces myocardial infarction size via ENOS/NO signaling and thus mitigates adverse cardiac remodeling. Front. Pharmacol., 2017, 8, 926.
[http://dx.doi.org/10.3389/fphar.2017.00926] [PMID: 29311930]
[88]
Zhang, Y.; Liao, P.; Zhu, M.; Li, W.; Hu, D.; Guan, S.; Chen, L. Baicalin attenuates cardiac dysfunction and myocardial remodeling in a chronic pressure-overload mice model. Cell. Physiol. Biochem., 2017, 41(3), 849-864.
[http://dx.doi.org/10.1159/000459708] [PMID: 28214892]
[89]
Yang, M.; Xiong, J.; Zou, Q.; Wang, D.D.; Huang, C.X. Chrysin attenuates interstitial fibrosis and improves cardiac function in a rat model of acute myocardial infarction. J. Mol. Histol., 2018, 49(6), 555-565.
[http://dx.doi.org/10.1007/s10735-018-9793-0] [PMID: 30225683]
[90]
De Los Santos, S.; García-Pérez, V.; Hernández-Reséndiz, S.; Palma-Flores, C.; González-Gutiérrez, C.J.; Zazueta, C.; Canto, P.; Coral-Vázquez, R.M. (-)-Epicatechin induces physiological cardiac growth by activation of the PI3K/Akt pathway in mice. Mol. Nutr. Food Res., 2017, 61(2)1600343
[http://dx.doi.org/10.1002/mnfr.201600343] [PMID: 27605464]
[91]
Chang, W.; Wu, Q-Q.; Xiao, Y.; Jiang, X-H.; Yuan, Y.; Zeng, X-F.; Tang, Q-Z. Acacetin protects against cardiac remodeling after myocardial infarction by mediating MAPK and PI3K/Akt signal pathway. J. Pharmacol. Sci., 2017, 135(4), 156-163.
[http://dx.doi.org/10.1016/j.jphs.2017.11.009] [PMID: 29276114]
[92]
Feng, H.; Cao, J.; Zhang, G.; Wang, Y. Kaempferol attenuates cardiac hypertrophy via regulation of ASK1/MAPK signaling pathway and oxidative stress. Planta Med., 2017, 83(10), 837-845.
[http://dx.doi.org/10.1055/s-0043-103415] [PMID: 28219095]
[93]
Zhao, F.; Fu, L.; Yang, W.; Dong, Y.; Yang, J.; Sun, S.; Hou, Y. Cardioprotective effects of baicalein on heart failure via modulation of Ca(2+) handling proteins in vivo and in vitro. Life Sci., 2016, 145, 213-223.
[http://dx.doi.org/10.1016/j.lfs.2015.12.036] [PMID: 26706290]
[94]
Morales, C.W.J. Molina, Díaz, J.M.; Plata, Ortiz, S.; Plata, Ortiz, J.E.; Morales, Camacho, M.A.; Calderón, B.P. Childhood obesity: aetiology, comorbidities and treatment. Diabetes Metab. Res. Rev., 2019, 35(8)e3203
[http://dx.doi.org/10.1002/dmrr.3203] [PMID: 31299135]
[95]
Asuku, A.Y.; Danborno, B.; Abubakar, S.A.; Timbuak, A.J.; Lawan, H.A. Adiposity measures in metabolic syndrome among hausas in kano, northern Nigeria. Niger. J. Physiol. Sci., 2019, 34(1), 17-25.
[PMID: 31449267]
[96]
Gomez-Campos, R.; Arruda, M.; Andruske, C.L.; Leite-Portella, D.; Pacheco-Carrillo, J.; Urral-Albornoz, C.; Sulla-Torres, J.; Luarte-Rocha, C.; Cossio-Bolaños, M.A. Physical growth and body adiposity curves in students of the Maule Region (Chile). Front Pediatr., 2019, 7, 323.
[http://dx.doi.org/10.3389/fped.2019.00323] [PMID: 31448248]
[97]
Akhlaghi, M.; Ghobadi, S.; Mohammad Hosseini, M.; Gholami, Z.; Mohammadian, F. Flavanols are potential anti-obesity agents, a systematic review and meta-analysis of controlled clinical trials. Nutr. Metab. Cardiovasc. Dis., 2018, 28(7), 675-690.
[http://dx.doi.org/10.1016/j.numecd.2018.04.001] [PMID: 29759310]
[98]
Jennings, A.; MacGregor, A.; Spector, T.; Cassidy, A. Higher dietary flavonoid intakes are associated with lower objectively measured body composition in women: evidence from discordant monozygotic twins. Am. J. Clin. Nutr., 2017, 105(3), 626-634.
[http://dx.doi.org/10.3945/ajcn.116.144394] [PMID: 28100511]
[99]
Basu, A.; Betts, N.M.; Nguyen, A.; Newman, E.D.; Fu, D.; Lyons, T.J. Freeze-dried strawberries lower serum cholesterol and lipid peroxidation in adults with abdominal adiposity and elevated serum lipids. J. Nutr., 2014, 144(6), 830-837.
[http://dx.doi.org/10.3945/jn.113.188169] [PMID: 24670970]
[100]
Kwon, E.Y.; Lee, J.; Kim, Y.J.; Do, A.; Choi, J.Y.; Cho, S.J.; Jung, U.J.; Lee, M.K.; Park, Y.B.; Choi, M.S. Seabuckthorn leaves extract and flavonoid glycosides extract from seabuckthorn leaves ameliorates adiposity, hepatic steatosis, insulin resistance, and inflammation in diet-induced obesity. Nutrients, 2017, 9(6)E569
[http://dx.doi.org/10.3390/nu9060569] [PMID: 28574484]
[101]
Kwon, E.Y.; Choi, M.S. Dietary eriodictyol alleviates adiposity, hepatic steatosis, insulin resistance, and inflammation in diet-induced obese mice. Int. J. Mol. Sci., 2019, 20(5)E1227
[http://dx.doi.org/10.3390/ijms20051227] [PMID: 30862092]
[102]
Caimari, A.; del Bas, J.M.; Crescenti, A.; Arola, L. Low doses of grape seed procyanidins reduce adiposity and improve the plasma lipid profile in hamsters. Int. J. Obes., 2013, 37(4), 576-583.
[http://dx.doi.org/10.1038/ijo.2012.75] [PMID: 22584454]
[103]
da Costa, G.F.; Santos, I.B.; de Bem, G.F.; Cordeiro, V.S.C.; da Costa, C.A.; de Carvalho, L.C.R.M.; Ognibene, D.T.; Resende, A.C.; de Moura, R.S. The beneficial effect of anthocyanidin-rich Vitis vinifera l. grape skin extract on metabolic changes induced by high-fat diet in mice involves antiinflammatory and antioxidant actions. Phytother. Res., 2017, 31(10), 1621-1632.
[http://dx.doi.org/10.1002/ptr.5898] [PMID: 28840618]
[104]
Zhang, B.; Deng, Z.; Ramdath, D.D.; Tang, Y.; Chen, P.X.; Liu, R.; Liu, Q.; Tsao, R. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chem., 2015, 172, 862-872.
[http://dx.doi.org/10.1016/j.foodchem.2014.09.144] [PMID: 25442631]
[105]
Kim, M.H.; Kang, K.S. Isoflavones as a smart curer for non-alcoholic fatty liver disease and pathological adiposity via ChREBP and Wnt signaling. Prev. Med., 2012, 54(Suppl.), S57-S63.
[http://dx.doi.org/10.1016/j.ypmed.2011.12.018] [PMID: 22227283]
[106]
Liu, W.; Zhao, S.; Wang, J.; Shi, J.; Sun, Y.; Wang, W.; Ning, G.; Hong, J.; Liu, R. Grape seed proanthocyanidin extract ameliorates inflammation and adiposity by modulating gut microbiota in high-fat diet mice. Mol. Nutr. Food Res., 2017, 61(9)
[http://dx.doi.org/10.1002/mnfr.201601082P] [PMID: 28500724]
[107]
Nabavi, S.F.; Russo, G.L.; Daglia, M.; Nabavi, S.M. Role of quercetin as an alternative for obesity treatment: you are what you eat! Food Chem., 2015, 179, 305-310.
[http://dx.doi.org/10.1016/j.foodchem.2015.02.006] [PMID: 25722169]
[108]
Etxeberria, U.; Arias, N.; Boqué, N.; Macarulla, M.T.; Portillo, M.P.; Martínez, J.A.; Milagro, F.I. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J. Nutr. Biochem., 2015, 26(6), 651-660.
[http://dx.doi.org/10.1016/j.jnutbio.2015.01.002] [PMID: 25762527]
[109]
Kuo, Y.T.; Lin, C.C.; Kuo, H.T.; Hung, J.H.; Liu, C.H.; Jassey, A.; Yen, M.H.; Wu, S.J.; Lin, L.T. Identification of baicalin from Bofutsushosan and Daisaikoto as a potent inducer of glucose uptake and modulator of insulin signaling-associated pathways. Yao Wu Shi Pin Fen Xi, 2019, 27(1), 240-248.
[http://dx.doi.org/10.1016/j.jfda.2018.07.002] [PMID: 30648577]
[110]
Hua, F.; Zhou, P.; Wu, H.Y.; Chu, G.X.; Xie, Z.W.; Bao, G.H. Inhibition of α-glucosidase and α-amylase by flavonoid glycosides from Lu’an GuaPian tea: molecular docking and interaction mechanism. Food Funct., 2018, 9(8), 4173-4183.
[http://dx.doi.org/10.1039/C8FO00562A] [PMID: 29989631]
[111]
Williams, R.J.; Spencer, J.P. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic. Biol. Med., 2012, 52(1), 35-45.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.09.010] [PMID: 21982844]
[112]
de Andrade Teles, R.B.; Diniz, T.C.; Costa Pinto, T.C.; de Oliveira Júnior, R.G.; Gama e Silva, M.; de Lavor, É.M.; Fernandes, A.W.C. Flavonoids as therapeutic agents in Alzheimer’s and Parkinson’s diseases: a systematic review of preclinical evidences. Oxid. Med. Cell. Longev., 2018, 20187043213
[http://dx.doi.org/10.1155/2018/7043213] [PMID: 29861833]
[113]
Monteiro, A.F.M.; Viana, J.D.O.; Nayarisseri, A.; Zondegoumba, E.N. Mendonça, Junior, F.J.B.; Scotti, M.T.; Scotti, L. Computational studies applied to flavonoids against Alzheimer’s and Parkinson’s diseases. Oxid. Med. Cell. Longev., 2018, 2018(2), 1-21.
[http://dx.doi.org/10.1155/2018/7912765]
[114]
Guzzi, C.; Colombo, L.; Luigi, A.; Salmona, M.; Nicotra, F.; Airoldi, C. Flavonoids and their glycosides as anti-amyloidogenic compounds: Aβ1-42 interaction studies to gain new insights into their potential for alzheimer’s disease prevention and therapy. Chem. Asian J., 2017, 12(1), 67-75.
[http://dx.doi.org/10.1002/asia.201601291] [PMID: 27766768]
[115]
Ruan, Q.; Ruan, J.; Zhang, W.; Qian, F.; Yu, Z. Targeting NAD+ degradation: the therapeutic potential of flavonoids for Alzheimer’s disease and cognitive frailty. Pharmacol. Res., 2018, 128, 345-358.
[http://dx.doi.org/10.1016/j.phrs.2017.08.010] [PMID: 28847709]
[116]
Mohebali, N.; Shahzadeh Fazeli, S.A.; Ghafoori, H.; Farahmand, Z. MohammadKhani, E.; Vakhshiteh, F.; Ghamarian, A.; Farhangniya, M.; Sanati, M.H. Effect of flavonoids rich extract of Capparis spinosa on inflammatory involved genes in amyloid-beta peptide injected rat model of Alzheimer’s disease. Nutr. Neurosci., 2018, 21(2), 143-150.
[http://dx.doi.org/10.1080/1028415X.2016.1238026] [PMID: 27778760]
[117]
Das, S.; Laskar, M.A.; Sarker, S.D.; Choudhury, M.D.; Choudhury, P.R.; Mitra, A.; Jamil, S.; Lathiff, S.M.A.; Abdullah, S.A.; Basar, N.; Nahar, L.; Talukdar, A.D. Prediction of Anti-Alzheimer’s activity of flavonoids targeting acetylcholinesterase in silico. Phytochem. Anal., 2017, 28(4), 324-331.
[http://dx.doi.org/10.1002/pca.2679] [PMID: 28168765]
[118]
Luo, W.; Wang, T.; Hong, C.; Yang, Y.C.; Chen, Y.; Cen, J.; Xie, S.Q.; Wang, C.J. Design, synthesis and evaluation of 4-dimethylamine flavonoid derivatives as potential multifunctional anti-Alzheimer agents. Eur. J. Med. Chem., 2016, 122, 17-26.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.022] [PMID: 27343850]
[119]
Bakhtiari, M.; Panahi, Y.; Ameli, J.; Darvishi, B. Protective effects of flavonoids against Alzheimer’s disease-related neural dysfunctions. Biomed. Pharmacother., 2017, 93, 218-229.
[http://dx.doi.org/10.1016/j.biopha.2017.06.010] [PMID: 28641164]
[120]
Al-Anazi, A.F.; Qureshi, V.F.; Javaid, K.; Qureshi, S. Preventive effects of phytoestrogens against postmenopausal osteoporosis as compared to the available therapeutic choices: an overview. J. Nat. Sci. Biol. Med., 2011, 2(2), 154-163.
[http://dx.doi.org/10.4103/0976-9668.92322] [PMID: 22346228]
[121]
Wang, Z.; Wang, D.; Yang, D.; Zhen, W.; Zhang, J.; Peng, S. The effect of icariin on bone metabolism and its potential clinical application. Osteoporos. Int., 2018, 29(3), 535-544.
[http://dx.doi.org/10.1007/s00198-017-4255-1] [PMID: 29110063]
[122]
Xu, J-H.; Yao, M.; Ye, J.; Wang, G-D.; Wang, J.; Cui, X-J.; Mo, W. Bone mass improved effect of icariin for postmenopausal osteoporosis in ovariectomy-induced rats: a meta-analysis and systematic review. Menopause, 2016, 23(10), 1152-1157.
[http://dx.doi.org/10.1097/GME.0000000000000673] [PMID: 27648597]
[123]
Zhao, B.J.; Wang, J.; Song, J.; Wang, C.F.; Gu, J.F.; Yuan, J.R.; Zhang, L.; Jiang, J.; Feng, L.; Jia, X.B. Beneficial effects of a flavonoid fraction of Herba epimedii on bone metabolism in ovariectomized rats. Planta Med., 2016, 82(4), 322-329.
[http://dx.doi.org/10.1055/s-0035-1558294] [PMID: 26824623]
[124]
Jiang, J.; Xiao, S.; Xu, X.; Ma, H.; Feng, C.; Jia, X. Isomeric flavonoid aglycones derived from Epimedii folium exerted different intensities in anti-osteoporosis through OPG/RANKL protein targets. Int. Immunopharmacol., 2018, 62, 277-286.
[http://dx.doi.org/10.1016/j.intimp.2018.07.017] [PMID: 30036771]
[125]
Tang, D.; Ju, C.; Liu, Y.; Xu, F.; Wang, Z.; Wang, D. Therapeutic effect of icariin combined with stem cells on postmenopausal osteoporosis in rats. J. Bone Miner. Metab., 2018, 36(2), 180-188.
[http://dx.doi.org/10.1007/s00774-017-0831-x] [PMID: 28681147]
[126]
Liu, M.; Zhong, C.; He, R.X.; Chen, L.F. Icariin associated with exercise therapy is an effective treatment for postmenopausal osteoporosis. Chin. Med. J. (Engl.), 2012, 125(10), 1784-1789.
[PMID: 22800900]
[127]
Kaczmarczyk-Sedlak, I.; Wojnar, W.; Zych, M.; Ozimina-Kamińska, E.; Bońka, A. Effect of dietary flavonoid naringenin on bones in rats with ovariectomy-induced osteoporosis. Acta Pol. Pharm., 2016, 73(4), 1073-1081.
[PMID: 29648734]
[128]
Xing, L.Z.; Ni, H.J.; Wang, Y.L. Quercitrin attenuates osteoporosis in ovariectomized rats by regulating mitogen-activated protein kinase (MAPK) signaling pathways. Biomed. Pharmacother., 2017, 89, 1136-1141.
[http://dx.doi.org/10.1016/j.biopha.2017.02.073] [PMID: 28314242]
[129]
Yang, Y-T.; Meng, J-H.; Hu, B.; Ma, C-Y.; Zhao, C-C.; Teng, W-S.; Hong, J-Q.; Li, S-H.; Jiang, G-Y.; Wang, C.; Zhou, C-H.; Yan, S-G. A novel anti-osteoporotic agent that protects against postmenopausal bone loss by regulating bone formation and bone resorption. Life Sci., 2018, 209, 409-419.
[http://dx.doi.org/10.1016/j.lfs.2018.08.014] [PMID: 30096387]
[130]
Cheng, J.; Zhou, L.; Liu, Q.; Tickner, J.; Tan, Z.; Li, X.; Liu, M.; Lin, X.; Wang, T.; Pavlos, N.J.; Zhao, J.; Xu, J. Cyanidin chloride inhibits ovariectomy-induced osteoporosis by suppressing RANKL-mediated osteoclastogenesis and associated signaling pathways. J. Cell. Physiol., 2018, 233(3), 2502-2512.
[http://dx.doi.org/10.1002/jcp.26126] [PMID: 28771720]
[131]
Jiang, J.; Dai, J.; Cui, H. Vitexin reverses the autophagy dysfunction to attenuate MCAO-induced cerebral ischemic stroke via mTOR/Ulk1 pathway. Biomed. Pharmacother., 2018, 99, 583-590.
[http://dx.doi.org/10.1016/j.biopha.2018.01.067] [PMID: 29710456]
[132]
Yasuda, N.; Ishii, T.; Oyama, D.; Fukuta, T.; Agato, Y.; Sato, A.; Shimizu, K.; Asai, T.; Asakawa, T.; Kan, T.; Yamada, S.; Ohizumi, Y.; Oku, N. Neuroprotective effect of nobiletin on cerebral ischemia-reperfusion injury in transient middle cerebral artery-occluded rats. Brain Res., 2014, 1559, 46-54.
[http://dx.doi.org/10.1016/j.brainres.2014.02.007] [PMID: 24534366]
[133]
Xiong, D.; Deng, Y.; Huang, B.; Yin, C.; Liu, B.; Shi, J.; Gong, Q. Icariin attenuates cerebral ischemia-reperfusion injury through inhibition of inflammatory response mediated by NF-κB, PPARα and PPARγ in rats. Int. Immunopharmacol., 2016, 30, 157-162.
[http://dx.doi.org/10.1016/j.intimp.2015.11.035] [PMID: 26679678]
[134]
Chen, H.; Lu, C.; Liu, H.; Wang, M.; Zhao, H.; Yan, Y.; Han, L. Quercetin ameliorates imiquimod-induced psoriasis-like skin inflammation in mice via the NF-κB pathway. Int. Immunopharmacol., 2017, 48, 110-117.
[http://dx.doi.org/10.1016/j.intimp.2017.04.022] [PMID: 28499194]
[135]
Palombo, R.; Savini, I.; Avigliano, L.; Madonna, S.; Cavani, A.; Albanesi, C.; Mauriello, A.; Melino, G.; Terrinoni, A. Luteolin-7-glucoside inhibits IL-22/STAT3 pathway, reducing proliferation, acanthosis, and inflammation in keratinocytes and in mouse psoriatic model. Cell Death Dis., 2016, 7(8)e2344
[http://dx.doi.org/10.1038/cddis.2016.201] [PMID: 27537526]
[136]
Hakobyan, A.; Arabyan, E.; Kotsinyan, A.; Karalyan, Z.; Sahakyan, H.; Arakelov, V.; Nazaryan, K.; Ferreira, F.; Zakaryan, H. Inhibition of African swine fever virus infection by genkwanin. Antiviral Res., 2019, 167, 78-82.
[http://dx.doi.org/10.1016/j.antiviral.2019.04.008] [PMID: 30991087]
[137]
Tang, K.; He, S.; Zhang, X.; Guo, J.; Chen, Q.; Yan, F.; Banadyga, L.; Zhu, W.; Qiu, X.; Guo, Y. Tangeretin, an extract from citrus peels, blocks cellular entry of arenaviruses that cause viral hemorrhagic fever. Antiviral Res., 2018, 160, 87-93.
[http://dx.doi.org/10.1016/j.antiviral.2018.10.011] [PMID: 30339847]
[138]
Ma, X.; Guo, Z.; Shen, Z.; Liu, Y.; Wang, J.; Fan, Y. The anti-porcine parvovirus activity of nanometer propolis flavone and propolis flavone in vitro and in vivo. Evid. Based Complement. Alternat. Med., 2015, 2015472876
[http://dx.doi.org/10.1155/2015/472876] [PMID: 25815034]
[139]
Tian, Y.; Sun, L.M.; Liu, X.Q.; Li, B.; Wang, Q.; Dong, J.X. Anti-HBV active flavone glucosides from Euphorbia humifusa Willd. Fitoterapia, 2010, 81(7), 799-802.
[http://dx.doi.org/10.1016/j.fitote.2010.04.012] [PMID: 20450964]
[140]
Zhou, X.; Li, G.; Yang, B.; Wu, J. Quercetin enhances inhibitory synaptic inputs and reduces excitatory synaptic inputs to OFF- and ON-type retinal ganglion cells in a chronic glaucoma rat model. Front. Neurosci., 2019, 13, 672.
[http://dx.doi.org/10.3389/fnins.2019.00672] [PMID: 31293381]
[141]
Gao, F-J.; Zhang, S-H.; Xu, P.; Yang, B-Q.; Zhang, R.; Cheng, Y.; Zhou, X.J.; Huang, W-J.; Wang, M.; Chen, J-Y.; Sun, X-H.; Wu, J-H. Quercetin declines apoptosis, ameliorates mitochondrial function and improves retinal ganglion cell survival and function in in vivo model of glaucoma in rat and retinal ganglion cell culture in vitro. Front. Mol. Neurosci., 2017, 10, 285.
[http://dx.doi.org/10.3389/fnmol.2017.00285] [PMID: 28936163]
[142]
Li, L.; Qin, J.; Fu, T.; Shen, J. Fisetin rescues retinal functions by suppressing inflammatory response in a DBA/2J mouse model of glaucoma. Doc. Ophthalmol., 2019, 138(2), 125-135.
[http://dx.doi.org/10.1007/s10633-019-09676-9] [PMID: 30756213]
[143]
Vorob’eva, I.V.; Vorob’eva, I.V. [Current data on the role of anthocyanosides and flavonoids in the treatment of eye diseases] Vestn. Oftalmol., 2015, 131(5), 104-110.
[http://dx.doi.org/10.17116/oftalma20151315104-108] [PMID: 26845880]
[144]
Ming, J.; Zhuoneng, L.; Guangxun, Z. Protective role of flavonoid baicalin from Scutellaria baicalensis in periodontal disease pathogenesis: a literature review. Complement. Ther. Med., 2018, 38, 11-18.
[http://dx.doi.org/10.1016/j.ctim.2018.03.010] [PMID: 29857875]
[145]
Matsumoto, C.; Inoue, H.; Tominari, T.; Watanabe, K.; Hirata, M.; Miyaura, C.; Inada, M. Heptamethoxyflavone, a citrus flavonoid, suppresses inflammatory osteoclastogenesis and alveolar bone resorption. Biosci. Biotechnol. Biochem., 2015, 79(1), 155-158.
[http://dx.doi.org/10.1080/09168451.2014.952616] [PMID: 25175163]
[146]
Farzanegan, A.; Shokuhian, M.; Jafari, S.; Shirazi, F.S.; Shahidi, M. Anti-histaminic effects of resveratrol and silymarin on human gingival fibroblasts. Inflammation, 2019, 42(5), 1622-1629.
[http://dx.doi.org/10.1007/s10753-019-01023-z] [PMID: 31165327]
[147]
Gugliandolo, E.; Fusco, R.; D’Amico, R.; Peditto, M.; Oteri, G.; Di Paola, R.; Cuzzocrea, S.; Navarra, M. Treatment with a flavonoid-rich fraction of bergamot juice improved lipopolysaccharide-induced periodontitis in rats. Front. Pharmacol., 2019, 9, 1563.
[http://dx.doi.org/10.3389/fphar.2018.01563] [PMID: 30705631]
[148]
Mantawy, E.M.; Said, R.S.; Abdel-Aziz, A.K. Mechanistic approach of the inhibitory effect of chrysin on inflammatory and apoptotic events implicated in radiation-induced premature ovarian failure: Emphasis on TGF-β/MAPKs signaling pathway. Biomed. Pharmacother., 2019, 109, 293-303.
[http://dx.doi.org/10.1016/j.biopha.2018.10.092] [PMID: 30396087]
[149]
Baluchnejadmojarad, T.; Zeinali, H.; Roghani, M. Scutellarin alleviates lipopolysaccharide-induced cognitive deficits in the rat: Insights into underlying mechanisms. Int. Immunopharmacol., 2018, 54, 311-319.
[http://dx.doi.org/10.1016/j.intimp.2017.11.033] [PMID: 29190543]
[150]
Francisco, V.; Figueirinha, A.; Costa, G.; Liberal, J.; Ferreira, I.; Lopes, M.C.; García-Rodríguez, C.; Cruz, M.T.; Batista, M.T. The flavone luteolin inhibits liver X receptor activation. J. Nat. Prod., 2016, 79(5), 1423-1428.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00146] [PMID: 27135143]
[151]
Arab, H.H.; Mohamed, W.R.; Barakat, B.M.; Arafa, E-S.A. Tangeretin attenuates cisplatin-induced renal injury in rats: Impact on the inflammatory cascade and oxidative perturbations. Chem. Biol. Interact., 2016, 258, 205-213.
[http://dx.doi.org/10.1016/j.cbi.2016.09.008] [PMID: 27616468]
[152]
Carmona-Gutierrez, D.; Zimmermann, A.; Kainz, K.; Pietrocola, F.; Chen, G.; Maglioni, S.; Schiavi, A.; Nah, J.; Mertel, S.; Beuschel, C.B.; Castoldi, F.; Sica, V.; Trausinger, G.; Raml, R.; Sommer, C.; Schroeder, S.; Hofer, S.J.; Bauer, M.A.; Pendl, T.; Tadic, J.; Dammbrueck, C.; Hu, Z.; Ruckenstuhl, C.; Eisenberg, T.; Durand, S.; Bossut, N.; Aprahamian, F.; Abdellatif, M.; Sedej, S.; Enot, D.P.; Wolinski, H.; Dengjel, J.; Kepp, O.; Magnes, C.; Sinner, F.; Pieber, T.R.; Sadoshima, J.; Ventura, N.; Sigrist, S.J.; Kroemer, G.; Madeo, F. The flavonoid 4,4′-dimethoxychalcone promotes autophagy-dependent longevity across species. Nat. Commun., 2019, 10(1), 651.
[http://dx.doi.org/10.1038/s41467-019-08555-w] [PMID: 30783116]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy