Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Antimicrobial Applications of Nanoliposome Encapsulated Silver Nanoparticles: A Potential Strategy to Overcome Bacterial Resistance

Author(s): M.R. Mozafari*, Sarabanou Torkaman, Fatemeh Mahsa Karamouzian, Babak Rasti* and Bikash Baral

Volume 17, Issue 1, 2021

Published on: 12 July, 2020

Page: [26 - 40] Pages: 15

DOI: 10.2174/1573413716999200712184148

Price: $65

Abstract

Bacterial infections result in hundreds of million cases of severe illness annually worldwide. Rapidly increasing drug resistance of pathogens further aggravates this threat to human health and warrants the search for effective broad-spectrum antibacterial agents. Silver metal has a long history of application in human medicine and healthcare. In ancient times, silver was employed as a disinfectant for water purification and storage while it is still being used as an antimicrobial ingredient in some nanotechnology-based products. Encapsulation of antimicrobial substances such as silver nanoparticles in nanoliposomes could provide protection and targeting for the encapsulated or entrapped material. Nanoliposomes are biocompatible and biodegradable drug delivery systems with the ability to encapsulate both lipid-soluble and water-soluble compounds, as well as metal ions. Furthermore, nanoliposomes have been shown to be able to deliver encapsulated agents to target bacteria in vitro as well as in vivo. In this review, we present the use of nanoliposome-encapsulated silver nanoparticles as an efficient system for antibacterial applications.

Keywords: Antibacterial, antimicrobial resistance, biocide, encapsulation, nanoliposome, nanosilver, theranostics.

Graphical Abstract
[1]
Silverman, J.A.; Deitcher, S.R. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother. Pharmacol., 2013, 71(3), 555-564.
[http://dx.doi.org/10.1007/s00280-012-2042-4] [PMID: 23212117]
[2]
Ereshefsky, L.; Mascarenas, C.A. Comparison of the effects of different routes of antipsychotic administration on pharmacokinetics and pharmacodynamics. J. Clin. Psychiatry, 2003, 64(Suppl. 16), 18-23.
[PMID: 14680415]
[3]
Rani, V. Nanomedicine and its applications. J. Chem. Pharm. Res., 2015, 7(7), 216-227.
[4]
Mozafari, M.R., Ed.; Nanocarrier Technologies: Frontiers of Nanotherapy; Springer: Dordrecht, The Netherlands, 2006.
[http://dx.doi.org/10.1007/978-1-4020-5041-1]
[5]
Singh, M.; Singh, S.; Prasad, S.; Gambhir, I.S. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig. J. Nanomater. Biostruct., 2008, 3(3), 115-122.
[6]
Jamil, B.; Bokhari, H.; Imran, M. Mechanism of action: how nano-antimicrobials act? Curr. Drug Targets, 2017, 18(3), 363-373.
[http://dx.doi.org/10.2174/1389450116666151019101826] [PMID: 26477460]
[7]
Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10(2), 57.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[8]
Mozafari, M.R. Liposomes: an overview of manufacturing techniques. Cell. Mol. Biol. Lett., 2005, 10(4), 711-719.
[PMID: 16341279]
[9]
Mozafari, M.R. Nanoliposomes: preparation and analysis. Methods Mol. Biol., 2010, 605, 29-50.
[http://dx.doi.org/10.1007/978-1-60327-360-2_2] [PMID: 20072871]
[10]
Ottenbrite, R.M.; Kim, S.W., Eds.; Polymeric Drugs and Drug Delivery Systems; CRC Press, 2019.
[http://dx.doi.org/10.1201/9780429136405]
[11]
Mozafari, M.R.; Javanmard, R.; Raji, M. Tocosome: Novel drug delivery system containing phospholipids and tocopheryl phosphates. Int. J. Pharm., 2017, 528(1-2), 381-382.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.037] [PMID: 28619450]
[12]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[13]
Heidarpour, F.; Ghani, W.A.; Ahmadun, F.R.; Sobri, S.; Zargar, M.; Mozafari, M.R. Nanosilver coated polypropylene water filter: I. Manufacture by electron beam gun using a modified Balzers 760 machine. Dig. J. Nanomater. Biostruct., 2010, 5(3), 787-796.
[14]
Heidarpour, F.; Ghani, W.W.A.K.; Bin Ahmadun, F.R.; Mozafari, M.R. Nano silver-coated polypropylene water filter: II. Evaluation of antimicrobial efficiency. Dig. J. Nanomater. Biostruct., 2010, 5(3), 797-804.
[15]
Heidarpour, F.; Ghani, W.W.A.K.; Fakhru’l-Razi, A.; Sobri, S.; Heydarpour, V.; Zargar, M.; Mozafari, M.R. Complete removal of pathogenic bacteria from drinking water using nano silver-coated cylindrical polypropylene filters. Clean Technol. Environ. Policy, 2011, 13(3), 499-507.
[http://dx.doi.org/10.1007/s10098-010-0332-2]
[16]
Fernando, S.S.; Gunasekara, T.D.; Holton, J. Antimicrobial nanoparticles: applications and mechanisms of action. SLJID, 2018, 8(1), 1-11.
[http://dx.doi.org/10.4038/sljid.v8i1.8167]
[17]
Mahmoudi, E.; Ng, L.Y.; Ang, W.L.; Chung, Y.T.; Rohani, R.; Mohammad, A.W. Enhancing morphology and separation performance of polyamide 6,6 membranes by minimal incorporation of silver decorated graphene oxide nanoparticles. Sci. Rep., 2019, 9(1), 1216.
[http://dx.doi.org/10.1038/s41598-018-38060-x] [PMID: 30718690]
[18]
Bernardo, M.P.; Moreira, F.K.; Mattoso, L.H.; Raja, S. Innovations in Antimicrobial Engineered Nanomaterials. Advanced Nanostructured Materials for Environmental Remediation; Naushad, M.; Rajendran, S; Gracia, F., Ed.; Springer: Cham, 2019, pp. 253-277.
[http://dx.doi.org/10.1007/978-3-030-04477-0_10]
[19]
Seil, J.T.; Webster, T.J. Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomedicine, 2012, 7, 2767-2781.
[PMID: 22745541]
[20]
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, 7(3), 219-242.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[21]
Nissen, S.; Furkert, F.H. Antimicrobial efficacy of a silver layer on hydrogel lenses. Ophthalmologe, 2000, 97(9), 640-643.
[http://dx.doi.org/10.1007/s003470070054] [PMID: 11147340]
[22]
Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res., 2000, 52(4), 662-668.
[http://dx.doi.org/10.1002/1097-4636(20001215)52:4<662:AID-JBM10>3.0.CO;2-3] [PMID: 11033548]
[23]
Peiris, M.K.; Gunasekara, C.P.; Jayaweera, P.M.; Arachchi, N.D.; Fernando, N. Biosynthesized silver nanoparticles: are they effective antimicrobials? Mem. Inst. Oswaldo Cruz, 2017, 112(8), 537-543.
[http://dx.doi.org/10.1590/0074-02760170023] [PMID: 28767978]
[24]
Marambio-Jones, C.; Hoek, E.M. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res., 2010, 12(5), 1531-1551.
[http://dx.doi.org/10.1007/s11051-010-9900-y]
[25]
Chen, X.; Schluesener, H.J. Nanosilver: a nanoproduct in medical application. Toxicol. Lett., 2008, 176(1), 1-12.
[http://dx.doi.org/10.1016/j.toxlet.2007.10.004] [PMID: 18022772]
[26]
Jain, P.; Pradeep, T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng., 2005, 90(1), 59-63.
[http://dx.doi.org/10.1002/bit.20368] [PMID: 15723325]
[27]
Chen, C.Y.; Chiang, C.L. Preparation of cotton fibers with antibacterial silver nanoparticles. Mater. Lett., 2008, 62(21-22), 3607-3609.
[http://dx.doi.org/10.1016/j.matlet.2008.04.008]
[28]
Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J.J. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res., 2008, 42(18), 4591-4602.
[http://dx.doi.org/10.1016/j.watres.2008.08.015] [PMID: 18804836]
[29]
El-Sayed, M.A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res., 2001, 34(4), 257-264.
[http://dx.doi.org/10.1021/ar960016n] [PMID: 11308299]
[30]
Amendola, V.; Meneghetti, M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys. Chem. Chem. Phys., 2009, 11(20), 3805-3821.
[http://dx.doi.org/10.1039/b900654k] [PMID: 19440607]
[31]
Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci., 2014, 9(6), 385-406.
[PMID: 26339255]
[32]
Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), 1534.
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[33]
Rais, A.; Anam, M. Green synthesis (using plant extracts) of Ag and Au nanoparticles. Glob. J. Nanomed., 2017, 2(3)555589
[34]
Klaus-Joerger, T.; Joerger, R.; Olsson, E.; Granqvist, C. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol., 2001, 19(1), 15-20.
[http://dx.doi.org/10.1016/S0167-7799(00)01514-6] [PMID: 11146098]
[35]
Arokiyaraj, S.; Vincent, S.; Saravanan, M.; Lee, Y.; Oh, Y.K.; Kim, K.H. Green synthesis of silver nanoparticles using Rheum palmatum root extract and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Artif. Cells Nanomed. Biotechnol., 2017, 45(2), 372-379.
[http://dx.doi.org/10.3109/21691401.2016.1160403] [PMID: 27023851]
[36]
Patra, S.; Mukherjee, S.; Barui, A.K.; Ganguly, A.; Sreedhar, B.; Patra, C.R. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater. Sci. Eng. C, 2015, 53, 298-309.
[http://dx.doi.org/10.1016/j.msec.2015.04.048] [PMID: 26042718]
[37]
Garmasheva, I.; Kovalenko, N.; Voychuk, S.; Ostapchuk, A.; Livins’ka, O.; Oleschenko, L. Lactobacillus species mediated synthesis of silver nanoparticles and their antibacterial activity against opportunistic pathogens in vitro. Bioimpacts, 2016, 6(4), 219-223.
[http://dx.doi.org/10.15171/bi.2016.29] [PMID: 28265538]
[38]
Minaeian, S.; Shahverdi, A.R.; Nohi, A.S. Extracellular biosynthesis of silver nanoparticles by some bacteria. JSIAU, 2008, 17(66), 1-4.
[39]
Peiris, M.M.K.; Fernando, S.S.N.; Jayaweera, P.M.; Arachchi, N.D.H.; Guansekara, T.D.C.P. Comparison of antimicrobial properties of silver nanoparticles synthesized from selected bacteria. Indian J. Microbiol., 2018, 58(3), 301-311.
[http://dx.doi.org/10.1007/s12088-018-0723-3] [PMID: 30013274]
[40]
Das, C.A.; Kumar, V.G.; Dhas, T.S.; Karthick, V.; Govindaraju, K.; Joselin, J.M.; Baalamurugan, J. Antibacterial activity of silver nanoparticles (biosynthesis): A short review on recent advances. Biocatal. Agric. Biotechnol., 2020, 27101593
[41]
Kalpana, D.; Lee, Y.S. Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown Klebsiella pneumoniae. Enzyme Microb. Technol., 2013, 52(3), 151-156.
[http://dx.doi.org/10.1016/j.enzmictec.2012.12.006] [PMID: 23410925]
[42]
Loo, Y.Y.; Chieng, B.W.; Nishibuchi, M.; Radu, S. Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis. Int. J. Nanomedicine, 2012, 7, 4263-4267.
[PMID: 22904632]
[43]
Khorrami, S.; Zarrabi, A.; Khaleghi, M.; Danaei, M.; Mozafari, M.R. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomedicine, 2018, 13, 8013-8024.
[http://dx.doi.org/10.2147/IJN.S189295] [PMID: 30568442]
[44]
Mozafari, M.R.; Mortazavi, S.M. Nanoliposomes: From Fundamentals to Recent Developments; Trafford Publishing Ltd: Oxford, UK, 2005.
[45]
Khorasani, S.; Danaei, M.; Mozafari, M.R. Nanoliposome technology for the food and nutraceutical industries. Trends Food Sci. Technol., 2018, 79, 106-115.
[http://dx.doi.org/10.1016/j.tifs.2018.07.009]
[46]
Mozafari, M.R.; Flanagan, J.; Matia-Merino, L.; Awati, A.; Omri, A.; Suntres, Z.E.; Singh, H. Recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods. J. Sci. Food Agric., 2006, 86(13), 2038-2045.
[http://dx.doi.org/10.1002/jsfa.2576]
[47]
Mugabe, C.; Halwani, M.; Azghani, A.O.; Lafrenie, R.M.; Omri, A. Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2006, 50(6), 2016-2022.
[http://dx.doi.org/10.1128/AAC.01547-05] [PMID: 16723560]
[48]
Ferreyra Maillard, A.P.V.; Dalmasso, P.R.; López de Mishima, B.A.; Hollmann, A. Interaction of green silver nanoparticles with model membranes: possible role in the antibacterial activity. Colloids Surf. B Biointerfaces, 2018, 171, 320-326.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.044] [PMID: 30055472]
[49]
Colas, J.C.; Shi, W.; Rao, V.S.; Omri, A.; Mozafari, M.R.; Singh, H. Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron, 2007, 38(8), 841-847.
[http://dx.doi.org/10.1016/j.micron.2007.06.013] [PMID: 17689087]
[50]
Hong, M.S.; Lim, S.J.; Oh, Y.K.; Kim, C.K. pH-sensitive, serum-stable and long-circulating liposomes as a new drug delivery system. J. Pharm. Pharmacol., 2002, 54(1), 51-58.
[http://dx.doi.org/10.1211/0022357021771913] [PMID: 11829129]
[51]
Chu, C.J.; Dijkstra, J.; Lai, M.Z.; Hong, K.; Szoka, F.C. Efficiency of cytoplasmic delivery by pH-sensitive liposomes to cells in culture. Pharm. Res., 1990, 7(8), 824-834.
[http://dx.doi.org/10.1023/A:1015908831507] [PMID: 2172955]
[52]
Gerasimov, O.V.; Boomer, J.A.; Qualls, M.M.; Thompson, D.H. Cytosolic drug delivery using pH- and light-sensitive liposomes. Adv. Drug Deliv. Rev., 1999, 38(3), 317-338.
[http://dx.doi.org/10.1016/S0169-409X(99)00035-6] [PMID: 10837763]
[53]
Roux, E.; Passirani, C.; Scheffold, S.; Benoit, J.P.; Leroux, J.C. Serum-stable and long-circulating, PEGylated, pH-sensitive liposomes. J. Control. Release, 2004, 94(2-3), 447-451.
[http://dx.doi.org/10.1016/j.jconrel.2003.10.024] [PMID: 14976960]
[54]
Lai, M.Z.; Düzgüneş, N.; Szoka, F.C. Effects of replacement of the hydroxyl group of cholesterol and tocopherol on the thermotropic behavior of phospholipid membranes. Biochemistry, 1985, 24(7), 1646-1653.
[http://dx.doi.org/10.1021/bi00328a012] [PMID: 3839132]
[55]
Webb, M.S.; Wheeler, J.J.; Bally, M.B.; Mayer, L.D. The cationic lipid stearylamine reduces the permeability of the cationic drugs verapamil and prochlorperazine to lipid bilayers: implications for drug delivery. Biochim. Biophys. Acta, 1995, 1238(2), 147-155.
[http://dx.doi.org/10.1016/0005-2736(95)00121-I] [PMID: 7548129]
[56]
Johnsson, M.; Edwards, K. Phase behavior and aggregate structure in mixtures of dioleoylphosphatidylethanolamine and poly(ethylene glycol)-lipids. Biophys. J., 2001, 80(1), 313-323.
[http://dx.doi.org/10.1016/S0006-3495(01)76016-X] [PMID: 11159404]
[57]
Lutwyche, P.; Cordeiro, C.; Wiseman, D.J.; St-Louis, M.; Uh, M.; Hope, M.J.; Webb, M.S.; Finlay, B.B. Intracellular delivery and antibacterial activity of gentamicin encapsulated in pH-sensitive liposomes. Antimicrob. Agents Chemother., 1998, 42(10), 2511-2520.
[http://dx.doi.org/10.1128/AAC.42.10.2511] [PMID: 9756749]
[58]
Cordeiro, C.; Wiseman, D.J.; Lutwyche, P.; Uh, M.; Evans, J.C.; Finlay, B.B.; Webb, M.S. Antibacterial efficacy of gentamicin encapsulated in pH-sensitive liposomes against an in vivo Salmonella enterica serovar typhimurium intracellular infection model. Antimicrob. Agents Chemother., 2000, 44(3), 533-539.
[http://dx.doi.org/10.1128/AAC.44.3.533-539.2000] [PMID: 10681314]
[59]
Momekova, D.; Rangelov, S.; Lambov, N. Long-circulating, pH-sensitive liposomes. Methods Mol. Biol., 2010, 605, 527-544.
[http://dx.doi.org/10.1007/978-1-60327-360-2_35] [PMID: 20072904]
[60]
Yan, X.; Scherphof, G.L.; Kamps, J.A. Liposome opsonization. J. Liposome Res., 2005, 15(1-2), 109-139.
[http://dx.doi.org/10.1081/LPR-64971] [PMID: 16194930]
[61]
Metselaar, J.M. Liposomal targeting of glucocorticoids: a novel treatment approach for inflammatory disorders., PhD Thesis, Utrecht University, Utrecht, Netherlands. 2003.
[62]
Deodhar, S.; Dash, A.K. Long circulating liposomes: challenges and opportunities. Ther. Deliv., 2018, 9(12), 857-872.
[http://dx.doi.org/10.4155/tde-2018-0035] [PMID: 30444455]
[63]
Milani, D.; Athiyah, U.; Hariyadi, D.M.; Pathak, Y.V. Surface Modification of Nanoparticles for Targeted Drug Delivery; Pathak, Y., Ed.; Springer: Cham, 2019, pp. 207-220.
[http://dx.doi.org/10.1007/978-3-030-06115-9_11]
[64]
Sesarman, A.; Tefas, L.; Sylvester, B.; Licarete, E.; Rauca, V.; Luput, L.; Patras, L.; Banciu, M.; Porfire, A. Anti-angiogenic and anti-inflammatory effects of long-circulating liposomes co-encapsulating curcumin and doxorubicin on C26 murine colon cancer cells. Pharmacol. Rep., 2018, 70(2), 331-339.
[http://dx.doi.org/10.1016/j.pharep.2017.10.004] [PMID: 29477042]
[65]
Yang, S. Preparation, in vitro characterization and pharmacokinetic study of coenzyme Q10 long-circulating liposomes. Drug Res. (Stuttg.), 2018, 68(5), 270-279.
[http://dx.doi.org/10.1055/s-0043-121876] [PMID: 29190857]
[66]
Pi, J.; Liu, Z.; Shu, L.; Li, L.; Wang, Y.; Li, N.; Li, J. Tissue distribution study of salvianolic acid B long-circulating liposomes in mice by UPLC-MS/MS determination. Pak. J. Pharm. Sci., 2015, 28(1), 213-220.
[PMID: 25553697]
[67]
Deodhar, S. Development and in-vitro evaluation of long circulating liposomes for targeted delivery of gemcitabine and irinotecan in pancreatic ductal adenocarcinoma Doctoral dissertation, Creighton University,, 2018.
[68]
Silva, J.O.; Fernandes, R.S.; Lopes, S.C.; Cardoso, V.N.; Leite, E.A.; Cassali, G.D.; Marzola, M.C.; Rubello, D.; Oliveira, M.C.; de Barros, A.L.B. pH-sensitive, long-circulating liposomes as an alternative tool to deliver doxorubicin into tumors: a feasibility animal study. Mol. Imaging Biol., 2016, 18(6), 898-904.
[http://dx.doi.org/10.1007/s11307-016-0964-7] [PMID: 27172938]
[69]
Tefas, L.R.; Sylvester, B.; Tomuta, I.; Sesarman, A.; Licarete, E.; Banciu, M.; Porfire, A. Development of antiproliferative long-circulating liposomes co-encapsulating doxorubicin and curcumin, through the use of a quality-by-design approach. Drug Des. Devel. Ther., 2017, 11, 1605-1621.
[http://dx.doi.org/10.2147/DDDT.S129008] [PMID: 28579758]
[70]
Khan, A.U.; Khan, M.; Cho, M.H.; Khan, M.M. Selected nanotechnologies and nanostructures for drug delivery, nanomedicine and cure. Bioprocess Biosyst. Eng., 2020, 19, 1-9.
[http://dx.doi.org/10.1007/s00449-020-02330-8] [PMID: 32193755]
[71]
Bakker-Woudenberg, I.A.; Schiffelers, R.M.; Storm, G.; Becker, M.J.; Guo, L. Long-circulating sterically stabilized liposomes in the treatment of infections. Methods Enzymol., 2005, 391, 228-260.
[http://dx.doi.org/10.1016/S0076-6879(05)91014-8] [PMID: 15721385]
[72]
Momekova, D.; Momekov, G.; Ivanova, J.; Pantcheva, I.; Drakalska, E.; Stoyanov, N.; Guenova, M.; Michova, A.; Balashev, K.; Arpadjan, S.; Mitewa, M.; Rangelov, S.; Lambov, N. Sterically stabilized liposomes as a platform for salinomycin metal coordination compounds: physicochemical characterization and in vitro evaluation. J. Drug Deliv. Sci. Technol., 2013, 23(3), 215-223.
[http://dx.doi.org/10.1016/S1773-2247(13)50033-5]
[73]
Podaru, G. Exploring controlled drug release from magneto liposomes (Doctoral dissertation, Kansas State University),, 2017.
[74]
Zangabad, P.S.; Mirkiani, S.; Shahsavari, S.; Masoudi, B.; Masroor, M.; Hamed, H.; Jafari, Z.; Taghipour, Y.D.; Hashemi, H.; Karimi, M.; Hamblin, M.R. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol. Rev., 2018, 7(1), 95-122.
[http://dx.doi.org/10.1515/ntrev-2017-0154] [PMID: 29404233]
[75]
Nobuto, H.; Sugita, T.; Kubo, T.; Shimose, S.; Yasunaga, Y.; Murakami, T.; Ochi, M. Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet. Int. J. Cancer, 2004, 109(4), 627-635.
[http://dx.doi.org/10.1002/ijc.20035] [PMID: 14991586]
[76]
Guo, Y.; Zhang, Y.; Ma, J.; Li, Q.; Li, Y.; Zhou, X.; Zhao, D.; Song, H.; Chen, Q.; Zhu, X. Light/magnetic hyperthermia triggered drug released from multi-functional thermo-sensitive magnetoliposomes for precise cancer synergetic theranostics. J. Control. Release, 2018, 272, 145-158.
[http://dx.doi.org/10.1016/j.jconrel.2017.04.028] [PMID: 28442407]
[77]
Chechetka, S.A.; Yuba, E.; Kono, K.; Yudasaka, M.; Bianco, A.; Miyako, E. Magnetically and near-infrared light-powered supramolecular nanotransporters for the remote control of enzymatic reactions. Angew. Chem. Int. Ed. Engl., 2016, 55(22), 6476-6481.
[http://dx.doi.org/10.1002/anie.201602453] [PMID: 27079747]
[78]
Leighton, T.G. What is ultrasound? Prog. Biophys. Mol. Biol., 2007, 93(1-3), 3-83.
[http://dx.doi.org/10.1016/j.pbiomolbio.2006.07.026] [PMID: 17045633]
[79]
Schroeder, A.; Kost, J.; Barenholz, Y. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem. Phys. Lipids, 2009, 162(1-2), 1-16.
[http://dx.doi.org/10.1016/j.chemphyslip.2009.08.003] [PMID: 19703435]
[80]
Javadi, M.; Pitt, W.G.; Belnap, D.M.; Tsosie, N.H.; Hartley, J.M. Encapsulating nanoemulsions inside eLiposomes for ultrasonic drug delivery. Langmuir, 2012, 28(41), 14720-14729.
[http://dx.doi.org/10.1021/la303464v] [PMID: 22989347]
[81]
Mason, T.J. Chemistry with Ultrasound; London; New York: Published for the Society of Chemical Industry by Elsevier Applied Science: New York, NY, USA , 1990.
[82]
Rychak, J.J.; Klibanov, A.L. Nucleic acid delivery with microbubbles and ultrasound. Adv. Drug Deliv. Rev., 2014, 72, 82-93.
[http://dx.doi.org/10.1016/j.addr.2014.01.009] [PMID: 24486388]
[83]
Silva, C.O.; Pinho, J.O.; Lopes, J.M.; Almeida, A.J.; Gaspar, M.M.; Reis, C. Current trends in cancer nanotheranostics: Metallic, polymeric, and lipid-based systems. Pharmaceutics, 2019, 11(1), 22.
[http://dx.doi.org/10.3390/pharmaceutics11010022] [PMID: 30625999]
[84]
Sirsi, S.R.; Borden, M.A. State-of-the-art materials for ultrasound-triggered drug delivery. Adv. Drug Deliv. Rev., 2014, 72, 3-14.
[http://dx.doi.org/10.1016/j.addr.2013.12.010] [PMID: 24389162]
[85]
Husseini, G.A.; Pitt, W.G. Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv. Drug Deliv. Rev., 2008, 60(10), 1137-1152.
[http://dx.doi.org/10.1016/j.addr.2008.03.008] [PMID: 18486269]
[86]
Pitt, W.G.; Husseini, G.A.; Staples, B.J. Ultrasonic drug delivery--a general review. Expert Opin. Drug Deliv., 2004, 1(1), 37-56.
[http://dx.doi.org/10.1517/17425247.1.1.37] [PMID: 16296719]
[87]
Husseini, G.A.; Myrup, G.D.; Pitt, W.G.; Christensen, D.A.; Rapoport, N.Y. Factors affecting acoustically triggered release of drugs from polymeric micelles. J. Control. Release, 2000, 69(1), 43-52.
[http://dx.doi.org/10.1016/S0168-3659(00)00278-9] [PMID: 11018545]
[88]
Ahmed, S.E.; Martins, A.M.; Husseini, G.A. The use of ultrasound to release chemotherapeutic drugs from micelles and liposomes. J. Drug Target., 2015, 23(1), 16-42.
[http://dx.doi.org/10.3109/1061186X.2014.954119] [PMID: 25203857]
[89]
Lin, H.Y.; Thomas, J.L. Factors affecting responsivity of unilamellar liposomes to 20 kHz ultrasound. Langmuir, 2004, 20(15), 6100-6106.
[http://dx.doi.org/10.1021/la049866z] [PMID: 15248690]
[90]
Schroeder, A.; Avnir, Y.; Weisman, S.; Najajreh, Y.; Gabizon, A.; Talmon, Y.; Kost, J.; Barenholz, Y. Controlling liposomal drug release with low frequency ultrasound: mechanism and feasibility. Langmuir, 2007, 23(7), 4019-4025.
[http://dx.doi.org/10.1021/la0631668] [PMID: 17319706]
[91]
Rediske, A.M.; Roeder, B.L.; Brown, M.K.; Nelson, J.L.; Robison, R.L.; Draper, D.O.; Schaalje, G.B.; Robison, R.A.; Pitt, W.G. Ultrasonic enhancement of antibiotic action on Escherichia coli biofilms: an in vivo model. Antimicrob. Agents Chemother., 1999, 43(5), 1211-1214.
[http://dx.doi.org/10.1128/AAC.43.5.1211] [PMID: 10223938]
[92]
Rediske, A.M.; Roeder, B.L.; Nelson, J.L.; Robison, R.L.; Schaalje, G.B.; Robison, R.A.; Pitt, W.G. Pulsed ultrasound enhances the killing of Escherichia coli biofilms by aminoglycoside antibiotics in vivo. Antimicrob. Agents Chemother., 2000, 44(3), 771-772.
[http://dx.doi.org/10.1128/AAC.44.3.771-772.2000] [PMID: 10681355]
[93]
Carmen, J.C.; Roeder, B.L.; Nelson, J.L.; Beckstead, B.L.; Runyan, C.M.; Robison, R.A.; Pitt, W.G. The treatment of implanted biofilms with low-frequency ultrasound and gentamicin. Am. J. Infect. Control, 2004, 33, 78-82.
[http://dx.doi.org/10.1016/j.ajic.2004.08.002] [PMID: 15761406]
[94]
Carmen, J.C.; Roeder, B.L.; Nelson, J.L.; Beckstead, B.L.; Runyan, C.M.; Schaalje, G.B.; Robison, R.A.; Pitt, W.G. Ultrasonically enhanced vancomycin activity against Staphylococcus epidermidis biofilms in vivo. J. Biomater. Appl., 2004, 18(4), 237-245.
[http://dx.doi.org/10.1177/0885328204040540] [PMID: 15070512]
[95]
Qian, Z.; Stoodley, P.; Pitt, W.G. Effect of low-intensity ultrasound upon biofilm structure from confocal scanning laser microscopy observation. Biomaterials, 1996, 17(20), 1975-1980.
[http://dx.doi.org/10.1016/0142-9612(96)00022-1] [PMID: 8894091]
[96]
Qian, Z.; Sagers, R.D.; Pitt, W.G. The role of insonation intensity in acoustic-enhanced antibiotic treatment of bacterial biofilms. Colloids Surf. B Biointerfaces, 1997, 9(5), 239-245.
[http://dx.doi.org/10.1016/S0927-7765(97)00029-5]
[97]
Qian, Z.; Sagers, R.D.; Pitt, W.G. Investigation of the mechanism of the bioacoustic effect. J. Biomed. Mater. Res., 1999, 44(2), 198-205.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199902)44:2<198:AID-JBM10>3.0.CO;2-P] [PMID: 10397921]
[98]
Rediske, A.M.; Hymas, W.C.; Wilkinson, R.; Pitt, W.G. Ultrasonic enhancement of antibiotic action on several species of bacteria. J. Gen. Appl. Microbiol., 1998, 44(4), 283-288.
[http://dx.doi.org/10.2323/jgam.44.283] [PMID: 12501423]
[99]
Rediske, A.M.; Rapoport, N.; Pitt, W.G. Reducing bacterial resistance to antibiotics with ultrasound. Lett. Appl. Microbiol., 1999, 28(1), 81-84.
[http://dx.doi.org/10.1046/j.1365-2672.1999.00461.x] [PMID: 10030038]
[100]
Qian, Z.; Sagers, R.D.; Pitt, W.G. The effect of ultrasonic frequency upon enhanced killing of P. aeruginosa biofilms. Ann. Biomed. Eng., 1997, 25(1), 69-76.
[http://dx.doi.org/10.1007/BF02738539] [PMID: 9124740]
[101]
Johnson, L.L.; Peterson, R.V.; Pitt, W.G. Treatment of bacterial biofilms on polymeric biomaterials using antibiotics and ultrasound. J. Biomater. Sci. Polym. Ed., 1998, 9(11), 1177-1185.
[http://dx.doi.org/10.1163/156856298X00712] [PMID: 9860179]
[102]
Yang, M.; Xie, S.; Adhikari, V.P.; Dong, Y.; Du, Y.; Li, D. The synergistic fungicidal effect of low-frequency and low-intensity ultrasound with amphotericin B-loaded nanoparticles on C. albicans in vitro. Int. J. Pharm., 2018, 542(1-2), 232-241.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.033] [PMID: 29559330]
[103]
Wust, P.; Hildebrandt, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P.M. Hyperthermia in combined treatment of cancer. Lancet Oncol., 2002, 3(8), 487-497.
[http://dx.doi.org/10.1016/S1470-2045(02)00818-5] [PMID: 12147435]
[104]
Dicheva, B.M.; Koning, G.A. Targeted thermosensitive liposomes: an attractive novel approach for increased drug delivery to solid tumors. Expert Opin. Drug Deliv., 2014, 11(1), 83-100.
[http://dx.doi.org/10.1517/17425247.2014.866650] [PMID: 24320104]
[105]
Yatvin, M.B.; Weinstein, J.N.; Dennis, W.H.; Blumenthal, R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science, 1978, 202(4374), 1290-1293.
[http://dx.doi.org/10.1126/science.364652] [PMID: 364652]
[106]
Landon, C.D.; Park, J.Y.; Needham, D.; Dewhirst, M.W. Nanoscale drug delivery and hyperthermia: the materials design and preclinical and clinical testing of low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. Open Nanomed. J., 2011, 3, 38-64.
[http://dx.doi.org/10.2174/1875933501103010038] [PMID: 23807899]
[107]
Needham, D.; Anyarambhatla, G.; Kong, G.; Dewhirst, M.W. A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res., 2000, 60(5), 1197-1201.
[PMID: 10728674]
[108]
Needham, D. Temperature-Sensitive Liposomal Formulation U.S. Patent no. 6200598B1 2001.
[109]
Hayashi, H.; Kono, K.; Takagishi, T. Temperature-dependent associating property of liposomes modified with a thermosensitive polymer. Bioconjug. Chem., 1998, 9(3), 382-389.
[http://dx.doi.org/10.1021/bc9701454] [PMID: 9576813]
[110]
Kono, K.; Yoshino, K.; Takagishi, T. Effect of poly(ethylene glycol) grafts on temperature-sensitivity of thermosensitive polymer-modified liposomes. J. Control. Release, 2002, 80(1-3), 321-332.
[http://dx.doi.org/10.1016/S0168-3659(02)00018-4] [PMID: 11943408]
[111]
Kneidl, B.; Peller, M.; Winter, G.; Lindner, L.H.; Hossann, M. Thermosensitive liposomal drug delivery systems: state of the art review. Int. J. Nanomedicine, 2014, 9, 4387-4398.
[PMID: 25258529]
[112]
Gaber, M.H.; Hong, K.; Huang, S.K.; Papahadjopoulos, D. Thermosensitive sterically stabilized liposomes: formulation and in vitro studies on mechanism of doxorubicin release by bovine serum and human plasma. Pharm. Res., 1995, 12(10), 1407-1416.
[http://dx.doi.org/10.1023/A:1016206631006] [PMID: 8584472]
[113]
Gaber, M.H.; Wu, N.Z.; Hong, K.; Huang, S.K.; Dewhirst, M.W.; Papahadjopoulos, D. Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks. Int. J. Radiat. Oncol. Biol. Phys., 1996, 36(5), 1177-1187.
[http://dx.doi.org/10.1016/S0360-3016(96)00389-6] [PMID: 8985041]
[114]
Gaber, M.H. Modulation of doxorubicin resistance in multidrug-resistance cells by targeted liposomes combined with hyperthermia. J. Biochem. Mol. Biol. Biophys., 2002, 6(5), 309-314.
[http://dx.doi.org/10.1080/10258140290033066] [PMID: 12385965]
[115]
Zhang, W.; Yu, W.; Ding, X.; Yin, C.; Yan, J.; Yang, E.; Guo, F.; Sun, D.; Wang, W. Self-assembled thermal gold nanorod-loaded thermosensitive liposome-encapsulated ganoderic acid for antibacterial and cancer photochemotherapy. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 406-419.
[http://dx.doi.org/10.1080/21691401.2018.1559177] [PMID: 30724609]
[116]
Choi, K.Y.; Liu, G.; Lee, S.; Chen, X. Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale, 2012, 4(2), 330-342.
[http://dx.doi.org/10.1039/C1NR11277E] [PMID: 22134683]
[117]
Muthu, M.S.; Feng, S.S. Theranostic liposomes for cancer diagnosis and treatment: current development and pre-clinical success. Expert Opin. Drug Deliv., 2013, 10(2), 151-155.
[http://dx.doi.org/10.1517/17425247.2013.729576] [PMID: 23061654]
[118]
Seleci, M.; Ag Seleci, D.; Scheper, T.; Stahl, F. Theranostic liposome-nanoparticle hybrids for drug delivery and bioimaging. Int. J. Mol. Sci., 2017, 18(7), 1415.
[http://dx.doi.org/10.3390/ijms18071415] [PMID: 28671589]
[119]
Al-Jamal, W.T.; Kostarelos, K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc. Chem. Res., 2011, 44(10), 1094-1104.
[http://dx.doi.org/10.1021/ar200105p] [PMID: 21812415]
[120]
Yang, C.; Ding, N.; Xu, Y.; Qu, X.; Zhang, J.; Zhao, C.; Hong, L.; Lu, Y.; Xiang, G. Folate receptor-targeted quantum dot liposomes as fluorescence probes. J. Drug Target., 2009, 17(7), 502-511.
[http://dx.doi.org/10.1080/10611860903013248] [PMID: 19489689]
[121]
Wen, C.J.; Zhang, L.W.; Al-Suwayeh, S.A.; Yen, T.C.; Fang, J.Y. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int. J. Nanomedicine, 2012, 7, 1599-1611.
[PMID: 22619515]
[122]
Grange, C.; Geninatti-Crich, S.; Esposito, G.; Alberti, D.; Tei, L.; Bussolati, B.; Aime, S.; Camussi, G. Combined delivery and magnetic resonance imaging of neural cell adhesion molecule-targeted doxorubicin-containing liposomes in experimentally induced Kaposi’s sarcoma. Cancer Res., 2010, 70(6), 2180-2190.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2821] [PMID: 20215497]
[123]
Feng, L.; Cheng, L.; Dong, Z.; Tao, D.; Barnhart, T.E.; Cai, W.; Chen, M.; Liu, Z. Theranostic liposomes with hypoxia-activated prodrug to effectively destruct hypoxic tumors post-photodynamic therapy. ACS Nano, 2017, 11(1), 927-937.
[http://dx.doi.org/10.1021/acsnano.6b07525] [PMID: 28027442]
[124]
Lasic, D.D. Mechanisms of liposome formation. J. Liposome Res., 1995, 5(3), 431-441.
[http://dx.doi.org/10.3109/08982109509010233]
[125]
Mohammadabadi, M.R.; Mozafari, M.R. Enhanced efficacy and bioavailability of thymoquinone using nanoliposomal dosage form. J. Drug Deliv. Sci. Technol., 2018, 47, 445-453.
[http://dx.doi.org/10.1016/j.jddst.2018.08.019]
[126]
Lasic, D.D. Novel applications of liposomes. Trends Biotechnol., 1998, 16(7), 307-321.
[http://dx.doi.org/10.1016/S0167-7799(98)01220-7] [PMID: 9675915]
[127]
Schott, H.; Schwendener, R. Incorporation of lipophilic antitumor and antiviral drugs into the lipid bilayer of small unilamellar liposomes.Liposome Technology; Gregory, G., Ed.; CRC Press, 2016, pp. 75-86.
[128]
Amoabediny, G.; Ochi, M.M.; Rezayat, S.M.; Akbarzadeh, A.; Ebrahimi, B. Targeted nano-liposome co-entrapping anti-cancer drugs US9855216B2, 2018.
[129]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[130]
Zarrabi, A.; Alipoor Amro Abadi, M.; Khorasani, S.; Mohammadabadi, M.R.; Jamshidi, A.; Torkaman, S.; Taghavi, E.; Mozafari, M.R.; Rasti, B. Nanoliposomes and tocosomes as multifunctional nanocarriers for the encapsulation of nutraceutical and dietary molecules. Molecules, 2020, 25(3), 638.
[http://dx.doi.org/10.3390/molecules25030638] [PMID: 32024189]
[131]
Mozafari, M.R.; Danaei, M.; Javanmard, R.; Raji, M.; Maherani, B. Nanoscale lipidic carrier systems: importance of preparation method and solvents. Glob. J. Nanomed., 2017, 2(4)555593
[132]
Wagner, A.; Vorauer-Uhl, K. Liposome technology for industrial purposes. J. Drug Deliv., 2011, 2011591325
[http://dx.doi.org/10.1155/2011/591325] [PMID: 21490754]
[133]
Low, W.L.; Martin, C.; Hill, D.J.; Kenward, M.A. Antimicrobial efficacy of liposome-encapsulated silver ions and tea tree oil against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Lett. Appl. Microbiol., 2013, 57(1), 33-39.
[http://dx.doi.org/10.1111/lam.12082] [PMID: 23581401]
[134]
Eid, K.A.; Azzazy, H.M. Sustained broad-spectrum antibacterial effects of nanoliposomes loaded with silver nanoparticles. Nanomedicine (Lond.), 2014, 9(9), 1301-1310.
[http://dx.doi.org/10.2217/nnm.13.89] [PMID: 24024570]
[135]
Azzazy, H.M.E.S.; Abduo, S.M.S.; Eid, K.A.M.; Guirgis, B.S.S. Direct detection of disease biomarkers in clinical specimens using cationic nanoparticle-based assays versatile and green methods for synthesis of anisotropic silver nanostructures US20150017258A1, 2015.
[136]
Chanda, D. Liposomal Uptake of Silver and Gold Nanoparticles. Master's Thesis. Louisiana State University and Agricultural and Mechanical College,, 2013.
[137]
Mozafari, M.R.; Reed, C.J.; Rostron, C.; Kocum, C.; Piskin, E. Construction of stable anionic liposome-plasmid particles using the heating method: a preliminary investigation. Cell. Mol. Biol. Lett., 2002, 7(3), 923-927.
[PMID: 12378277]
[138]
Lee, J.H.; Shin, Y.; Lee, W.; Whang, K.; Kim, D.; Lee, L.P.; Choi, J.W.; Kang, T. General and programmable synthesis of hybrid liposome/metal nanoparticles. Sci. Adv., 2016, 2(12)e1601838
[http://dx.doi.org/10.1126/sciadv.1601838] [PMID: 28028544]
[139]
Taggar, A.S.; Alnajim, J.; Anantha, M.; Thomas, A.; Webb, M.; Ramsay, E.; Bally, M.B. Copper-topotecan complexation mediates drug accumulation into liposomes. J. Control. Release, 2006, 114(1), 78-88.
[http://dx.doi.org/10.1016/j.jconrel.2006.05.019] [PMID: 16842880]
[140]
Petersen, A.L.; Binderup, T.; Rasmussen, P.; Henriksen, J.R.; Elema, D.R.; Kjær, A.; Andresen, T.L. 64Cu loaded liposomes as positron emission tomography imaging agents. Biomaterials, 2011, 32(9), 2334-2341.
[http://dx.doi.org/10.1016/j.biomaterials.2010.11.059] [PMID: 21216003]
[141]
Bilgin, M.D.; Elçin, A.E.; Elçin, Y.M. Topical use of liposomal copper palmitate formulation blocks porphyrin-induced photosensitivity in rats. J. Photochem. Photobiol. B, 2005, 80(2), 107-114.
[http://dx.doi.org/10.1016/j.jphotobiol.2005.03.009] [PMID: 15893469]
[142]
Zhang, L.C.; Chen, L.Y.; Wang, L. Surface modification of titanium and titanium alloys: technologies, developments and future interests. Adv. Eng. Mater., 2019, 20191901258
[143]
Ding, Z.; Fan, Q.; Wang, L. A review on friction stir processing of titanium alloy: characterization, method, microstructure, properties. Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci., 2019, 50(5), 2134-2162.
[http://dx.doi.org/10.1007/s11663-019-01634-9]
[144]
Chihara, Y.; Fujimoto, K.; Kondo, H.; Moriwaka, Y.; Sasahira, T.; Hirao, Y.; Kuniyasu, H. Anti-tumor effects of liposome-encapsulated titanium dioxide in nude mice. Pathobiology, 2007, 74(6), 353-358.
[http://dx.doi.org/10.1159/000110029] [PMID: 18087200]
[145]
Hadaruga, D.I.; Hadaruga, N.G.; Lazau, C.; Craciun, C.; Grozescu, I. Liposomes containing titanium dioxide nanoparticles. J. Agroaliment. Processes Technol., 2010, 16(1), 62-66.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy