Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Effects of Gentiana lutea Root on Vascular Diseases

Author(s): ">Gordana Joksic, Djordje Radak, ">Emina Sudar-Milovanovic, ">Milan Obradovic, ">Jelena Radovanovic and ">Esma R. Isenovic*

Volume 19, Issue 4, 2021

Published on: 29 May, 2020

Page: [359 - 369] Pages: 11

DOI: 10.2174/1570161118666200529111314

Price: $65

Abstract

Background: Gentiana lutea (GL), commonly known as yellow gentian, bitter root, and bitterwort, belongs to family Gentianaceae. GL belongs to genus Gentiana, which is a rich natural source of iridoids, secoiridoids, xantones, flavonoids, triterpenoids, and carbohydrates. Medicinal plants from Gentiana species have anti-oxidant, anti-inflammatory, anti-mitogenic, anti-proliferative, and lipidlowering effects, as well as a cardioprotective, hypotensive, vasodilator and anti-platelet activities.

Objective: We reviewed the recent literature related to the effects of Gentiana species, and their active components on vascular diseases.

Methods: Data used for this review were obtained by searching the electronic database [PUBMED/ MEDLINE 1973 - February 2020]. The primary data search terms of interest were: Gentiana lutea, Gentienacea family, phytochemistry, vascular diseases, treatment of vascular diseases, antioxidant, anti-inflammatory, anti-atherogenic.

Conclusion: Gentiana species and their constituents affect many different factors related to vascular disease development and progression. Therefore, Gentiana-based therapeutics represent potentially useful drugs for the management of vascular diseases.

Keywords: Gentiana lutea, Gentienacea family, phytochemistry, vascular diseases, treatment of vascular diseases, antioxidant, anti-inflammatory, anti-atherogenic.

Graphical Abstract
[1]
Struwe L, Kadereit JW, Klackenberg J, et al. Systematics, character evolution, and biogeography of Gentianaceae, including a new tribal and subtribal classificationGentianaceae: Systematics and Natural History. Cambridge: Cambridge University Press 2002; pp. 21-309.
[2]
Hayashi T, Yamagishi T. Two xanthone glycosides from Gentiana lutea. Phytochemistry 1988; 27: 3696-9.
[http://dx.doi.org/10.1016/0031-9422(88)80805-7]
[3]
Pan Y, Zhao YL, Zhang J, Li WY, Wang YZ. Phytochemistry and Pharmacological Activities of the Genus Gentiana (Gentianaceae). Chem Biodivers 2016; 13(2): 107-50.
[http://dx.doi.org/10.1002/cbdv.201500333] [PMID: 26880427]
[4]
Kesavan R, Chandel S, Upadhyay S, et al. Gentiana lutea exerts anti-atherosclerotic effects by preventing endothelial inflammation and smooth muscle cell migration. Nutr Metab Cardiovasc Dis 2016; 26(4): 293-301.
[http://dx.doi.org/10.1016/j.numecd.2015.12.016] [PMID: 26868432]
[5]
Hostettmann K, Bellmann G, Tabacchi R, Jacot-Guillarmond A. Phytochemistry of the Gentiana genus III. Flavonic and xanthonic compounds in the leaves of Gentiana lutea. Helv Chim Acta 1973; 56: 3050-4.
[http://dx.doi.org/10.1002/hlca.19730560842]
[6]
Saha P, Mandal S, Das A, Das S. Amarogentin can reduce hyperproliferation by downregulation of Cox-II and upregulation of apoptosis in mouse skin carcinogenesis model. Cancer Lett 2006; 244(2): 252-9.
[http://dx.doi.org/10.1016/j.canlet.2005.12.036] [PMID: 16517061]
[7]
Haraguchi H, Tanaka Y, Kabbash A, Fujioka T, Ishizu T, Yagi A. Monoamine oxidase inhibitors from Gentiana lutea. Phytochemistry 2004; 65(15): 2255-60.
[http://dx.doi.org/10.1016/j.phytochem.2004.06.025] [PMID: 15587710]
[8]
ESCOP. Monographs on the Medicinal use of plant drugs Fascicules 3-5. Devon, UK: ESCOP, European Scientific Cooperative on Phytotherapy 1997.
[9]
WHO. WHO monographs on selected medicinal plants. Geneva. CH: World Health Organization 2007; 3: 376.
[10]
Brahmachari G, Mondal S, Gangopadhyay A, et al. Swertia (Gentianaceae): chemical and pharmacological aspects. Chem Biodivers 2004; 1(11): 1627-51.
[http://dx.doi.org/10.1002/cbdv.200490123] [PMID: 17191805]
[11]
Nastasijevic B, Milosevic M, Janjic G, Stanic V, Vasic V. Gentiana lutea extracts and their constituents as inhibitors of synaptosomal ecto-NTPDase. Int J Pharmacol 2016; 12: 272-89.
[http://dx.doi.org/10.3923/ijp.2016.272.289]
[12]
Sozański T, Kucharska AZ, Rapak A, et al. Iridoid-loganic acid versus anthocyanins from the Cornus mas fruits (cornelian cherry): Common and different effects on diet-induced atherosclerosis, PPARs expression and inflammation. Atherosclerosis 2016; 254: 151-60.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.10.001] [PMID: 27744131]
[13]
Han H, Xu L, Xiong K, Zhang T, Wang Z. Exploration of hepatoprotective effect of gentiopicroside on alpha-naphthylisothiocyanate-induced cholestatic liver injury in rats by comprehensive proteomic and metabolomic signatures. Cell Physiol Biochem 2018; 49(4): 1304-19.
[http://dx.doi.org/10.1159/000493409] [PMID: 30223280]
[14]
Wu S, Ning Y, Zhao Y, et al. Research progress of natural product gentiopicroside - a secoiridoid compound. Mini Rev Med Chem 2017; 17(1): 62-77.
[http://dx.doi.org/10.2174/1389557516666160624124127] [PMID: 27342232]
[15]
Rojas A, Bah M, Rojas JI, Gutiérrez DM. Smooth muscle relaxing activity of gentiopicroside isolated from Gentiana spathacea. Planta Med 2000; 66(8): 765-7.
[http://dx.doi.org/10.1055/s-2000-9774] [PMID: 11199140]
[16]
Trujillo KA. Are NMDA receptors involved in opiate-induced neural and behavioral plasticity? A review of preclinical studies. Psychopharmacology (Berl) 2000; 151(2-3): 121-41.
[http://dx.doi.org/10.1007/s002130000416] [PMID: 10972459]
[17]
Liu S-B, Ma L, Guo H-J, et al. Gentiopicroside attenuates morphine rewarding effect through downregulation of GluN2B receptors in nucleus accumbens. CNS Neurosci Ther 2012; 18(8): 652-8.
[http://dx.doi.org/10.1111/j.1755-5949.2012.00338.x] [PMID: 22621711]
[18]
Olennikov DN, Kashchenko NI, Chirikova NK, Tankhaeva LM. Iridoids and flavonoids of four siberian gentians: chemical profile and gastric stimulatory effect. Molecules 2015; 20(10): 19172-88.
[http://dx.doi.org/10.3390/molecules201019172] [PMID: 26506331]
[19]
Li X, Zhang Y, Jin Q, et al. Liver kinase B1/AMP-activated protein kinase-mediated regulation by gentiopicroside ameliorates P2X7 receptor-dependent alcoholic hepatosteatosis. Br J Pharmacol 2018; 175(9): 1451-70.
[http://dx.doi.org/10.1111/bph.14145] [PMID: 29338075]
[20]
Vaidya H, Rajani M, Sudarsanam V, Padh H, Goyal R. Antihyperlipidaemic activity of swertiamarin, a secoiridoid glycoside in poloxamer-407-induced hyperlipidaemic rats. J Nat Med 2009; 63(4): 437-42.
[http://dx.doi.org/10.1007/s11418-009-0350-8] [PMID: 19633811]
[21]
Patel N, Tyagi RK, Tandel N, Garg NK, Soni N. The molecular targets of swertiamarin and its derivatives confer anti- diabetic and anti-hyperlipidemic effects. Curr Drug Targets 2018; 19(16): 1958-67.
[http://dx.doi.org/10.2174/1389450119666180406113428] [PMID: 29623834]
[22]
Oztürk N, Korkmaz S, Oztürk Y, Başer KH. Effects of gentiopicroside, sweroside and swertiamarine, secoiridoids from gentian (Gentiana lutea ssp. symphyandra), on cultured chicken embryonic fibroblasts. Planta Med 2006; 72(4): 289-94.
[http://dx.doi.org/10.1055/s-2005-916198] [PMID: 16557467]
[23]
EMA. Assessment report on Gentiana lutea L, radix, Doc Ref: EMA/HMPC/578322/2008. European Medicines Agency 2009.
[24]
Behrens M, Brockhoff A, Batram C, Kuhn C, Appendino G, Meyerhof W. The human bitter taste receptor hTAS2R50 is activated by the two natural bitter terpenoids andrographolide and amarogentin. J Agric Food Chem 2009; 57(21): 9860-6.
[http://dx.doi.org/10.1021/jf9014334] [PMID: 19817411]
[25]
Akileshwari C, Muthenna P, Nastasijević B, Joksić G, Petrash JM, Reddy GB. Inhibition of aldose reductase by Gentiana lutea extracts. Exp Diabetes Res 2012; 2012147965
[http://dx.doi.org/10.1155/2012/147965] [PMID: 22844269]
[26]
Shukla S, Bafna K, Sundar D, Thorat SS. The bitter barricading of prostaglandin biosynthesis pathway: understanding the molecular mechanism of selective cyclooxygenase-2 inhibition by amarogentin, a secoiridoid glycoside from Swertia chirayita. PLoS One 2014; 9(6)e90637
[http://dx.doi.org/10.1371/journal.pone.0090637] [PMID: 24603686]
[27]
Yen TL, Lu WJ, Lien LM, et al. Amarogentin, a secoiridoid glycoside, abrogates platelet activation through PLC γ 2-PKC and MAPK pathways. BioMed Res Int 2014; 2014728019
[http://dx.doi.org/10.1155/2014/728019] [PMID: 24868545]
[28]
Kesavan R, Potunuru UR, Nastasijević BTA, Joksić G, Dixit M. Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts. PLoS One 2013; 8(4)e61393
[http://dx.doi.org/10.1371/journal.pone.0061393]
[29]
Potunuru UR, Priya KV, Varsha MKNS, et al. Amarogentin, a secoiridoid glycoside, activates AMP- activated protein kinase (AMPK) to exert beneficial vasculo-metabolic effects. Biochim Biophys Acta, Gen Subj 2019; 1863(8): 1270-82.
[http://dx.doi.org/10.1016/j.bbagen.2019.05.008] [PMID: 31125678]
[30]
Mirzaee F, Hosseini A, Jouybari HB, Davoodi A, Azadbakht M. Medicinal, biological and phytochemical properties of Gentiana species. J Tradit Complement Med 2017; 7(4): 400-8.
[http://dx.doi.org/10.1016/j.jtcme.2016.12.013] [PMID: 29034186]
[31]
Wu X, Tang S, Jin Y, et al. Determination of the metabolic profile of gentianine after oral administration to rats by high performance liquid chromatography/electrospray ionization-trap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 989: 98-103.
[http://dx.doi.org/10.1016/j.jchromb.2015.01.007] [PMID: 25813903]
[32]
Vaidya H, Goyal RK, Cheema SK. Anti-diabetic activity of swertiamarin is due to an active metabolite, gentianine, that upregulates PPAR-γ gene expression in 3T3-L1 cells. Phytother Res 2013; 27(4): 624-7.
[http://dx.doi.org/10.1002/ptr.4763] [PMID: 22718571]
[33]
Kwak WJ, Kim JH, Ryu KH, Cho YB, Jeon SD, Moon CK. Effects of gentianine on the production of pro-inflammatory cytokines in male Sprague-Dawley rats treated with lipopolysaccharide (LPS). Biol Pharm Bull 2005; 28(4): 750-3.
[http://dx.doi.org/10.1248/bpb.28.750] [PMID: 15802824]
[34]
Urbain A, Marston A, Queiroz EF, Ndjoko K, Hostettmann K. Xanthones from Gentiana campestris as new acetylcholinesterase inhibitors. Planta Med 2004; 70(10): 1011-4.
[http://dx.doi.org/10.1055/s-2004-832632] [PMID: 15490334]
[35]
Senol FS, Tuzun CY, Toker G, Orhan IE. An in vitro perspective to cholinesterase inhibitory and antioxidant activity of five Gentiana species and Gentianella caucasea. Int J Food Sci Nutr 2012; 63(7): 802-12.
[http://dx.doi.org/10.3109/09637486.2012.676031] [PMID: 22475010]
[36]
Janković T, Savikin K, Menković N, et al. Radioprotective effects of Gentianella austriaca fractions and polyphenolic constituents in human lymphocytes. Planta Med 2008; 74(7): 736-40.
[http://dx.doi.org/10.1055/s-2008-1074524] [PMID: 18446672]
[37]
Basnet P. The hypoglycaemia activity of Swertia japonica extract in streptozotocin induced hyperglycaemic rats. Phytother Res 1994; 8(1): 55-7.
[http://dx.doi.org/10.1002/ptr.2650080114]
[38]
Basnet P, Kadota S, Shimizu M, Namba T. Bellidifolin: a potent hypoglycemic agent in streptozotocin (STZ)-induced diabetic rats from Swertia japonica. Planta Med 1994; 60(6): 507-11.
[http://dx.doi.org/10.1055/s-2006-959560] [PMID: 7809201]
[39]
Aberham A, Schwaiger S, Stuppner H, Ganzera M. Quantitative analysis of iridoids, secoiridoids, xanthones and xanthone glycosides in Gentiana lutea L. roots by RP-HPLC and LC-MS. J Pharm Biomed Anal 2007; 45(3): 437-42.
[http://dx.doi.org/10.1016/j.jpba.2007.07.001] [PMID: 17697760]
[40]
He M, Min J-W, Kong W-L, He X-H, Li J-X, Peng B-W. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 2016; 115: 74-85.
[http://dx.doi.org/10.1016/j.fitote.2016.09.011] [PMID: 27693342]
[41]
Lin C-M, Chen C-S, Chen C-T, Liang Y-C, Lin J-K. Molecular modeling of flavonoids that inhibits xanthine oxidase. Biochem Biophys Res Commun 2002; 294(1): 167-72.
[http://dx.doi.org/10.1016/S0006-291X(02)00442-4] [PMID: 12054758]
[42]
Folador P, Cazarolli LH, Gazola AC, Reginatto FH, Schenkel EP, Silva FRMB. Potential insulin secretagogue effects of isovitexin and swertisin isolated from Wilbrandia ebracteata roots in non-diabetic rats. Fitoterapia 2010; 81(8): 1180-7.
[http://dx.doi.org/10.1016/j.fitote.2010.07.022] [PMID: 20678557]
[43]
Choo CY, Sulong NY, Man F, Wong TW. Vitexin and isovitexin from the leaves of Ficus deltoidea with in-vivo α-glucosidase inhibition. J Ethnopharmacol 2012; 142(3): 776-81.
[http://dx.doi.org/10.1016/j.jep.2012.05.062] [PMID: 22683902]
[44]
Mc Namara K, Alzubaidi H, Jackson JK. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integr Pharm Res Pract 2019; 8: 1-11.
[http://dx.doi.org/10.2147/IPRP.S133088] [PMID: 30788283]
[45]
Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 2017; 70(1): 1-25.
[http://dx.doi.org/10.1016/j.jacc.2017.04.052] [PMID: 28527533]
[46]
Shenoy V, Mehendale V, Prabhu K, Shetty R, Rao P. Correlation of serum homocysteine levels with the severity of coronary artery disease. Indian J Clin Biochem 2014; 29(3): 339-44.
[http://dx.doi.org/10.1007/s12291-013-0373-5] [PMID: 24966483]
[47]
Sun ZH, Rashmizal H, Xu L. Molecular imaging of plaques in coronary arteries with PET and SPECT. J Geriatr Cardiol 2014; 11(3): 259-73.
[PMID: 25278976]
[48]
Patel MR, Conte MS, Cutlip DE, et al. Evaluation and treatment of patients with lower extremity peripheral artery disease: consensus definitions from peripheral academic research consortium (PARC). J Am Coll Cardiol 2015; 65(9): 931-41.
[http://dx.doi.org/10.1016/j.jacc.2014.12.036] [PMID: 25744011]
[49]
Muir RL. Peripheral arterial disease: Pathophysiology, risk factors, diagnosis, treatment, and prevention. J Vasc Nurs 2009; 27(2): 26-30.
[http://dx.doi.org/10.1016/j.jvn.2009.03.001] [PMID: 19486852]
[50]
Cunnane EM, Mulvihill JJE, Barrett HE, Hennessy MM, Kavanagh EG, Walsh MT. Mechanical properties and composition of carotid and femoral atherosclerotic plaques: A comparative study. J Biomech 2016; 49(15): 3697-704.
[http://dx.doi.org/10.1016/j.jbiomech.2016.09.036] [PMID: 27776741]
[51]
Hu X, De Silva TM, Chen J, Faraci FM. Cerebral vascular disease and neurovascular injury in ischemic stroke. Circ Res 2017; 120(3): 449-71.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308427] [PMID: 28154097]
[52]
The Lancet Neurology. Vascular disease and neurodegeneration: advancing together. Lancet Neurol 2017; 16(5): 333.
[http://dx.doi.org/10.1016/S1474-4422(17)30086-8] [PMID: 28414641]
[53]
Rider OJ, Cox P, Tyler D, Clarke K, Neubauer S. Myocardial substrate metabolism in obesity. Int J Obes 2013; 37(7): 972-9.
[http://dx.doi.org/10.1038/ijo.2012.170] [PMID: 23069666]
[54]
Katsiki N, Athyros VG, Karagiannis A, Mikhailidis DP. Metabolic syndrome and non-cardiac vascular diseases: an update from human studies. Curr Pharm Des 2014; 20(31): 4944-52.
[http://dx.doi.org/10.2174/1381612819666131206100750] [PMID: 24320038]
[55]
Robbins JM, Austin CL. Common peripheral vascular diseases. Clin Podiatr Med Surg 1993; 10(2): 205-19.
[PMID: 8481879]
[56]
Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364(9438): 937-52.
[http://dx.doi.org/10.1016/S0140-6736(04)17018-9] [PMID: 15364185]
[57]
Brunner H, Cockcroft JR, Deanfield J, et al. A statement by the working group on endothelin and endothelial factors of the European society of hypertension. J Hypertens 2005; 23(2): 233-46.
[http://dx.doi.org/10.1097/00004872-200502000-00001] [PMID: 15662207]
[58]
Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 2003; 23(2): 168-75.
[http://dx.doi.org/10.1161/01.ATV.0000051384.43104.FC] [PMID: 12588755]
[59]
Verma S, Wang CH, Li SH, et al. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation 2002; 106(8): 913-9.
[http://dx.doi.org/10.1161/01.CIR.0000029802.88087.5E] [PMID: 12186793]
[60]
Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016; 118(4): 620-36.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962]
[61]
Nastasijević B, Lazarević-Pašti T, Dimitrijević-Branković S, et al. Inhibition of myeloperoxidase and antioxidative activity of Gentiana lutea extracts. J Pharm Biomed Anal 2012; 66: 191-6.
[http://dx.doi.org/10.1016/j.jpba.2012.03.052] [PMID: 22521634]
[62]
Leskovac A, Joksic G, Jankovic T, Savikin K, Menkovic N. Radioprotective properties of the phytochemically characterized extracts of Crataegus monogyna, Cornus mas and Gentianella austriaca on human lymphocytes in vitro. Planta Med 2007; 73(11): 1169-75.
[http://dx.doi.org/10.1055/s-2007-981586] [PMID: 17764067]
[63]
Kusar A, Zupancic A, Sentjurc M, Baricevic D. Free radical scavenging activities of yellow gentian (Gentiana lutea L.) measured by electron spin resonance. Hum Exp Toxicol 2006; 25(10): 599-604.
[http://dx.doi.org/10.1177/096032706072467] [PMID: 17165626]
[64]
Waltenberger B, Liu R, Atanasov AG, et al. Nonprenylated xanthones from Gentiana lutea, Frasera caroliniensis, and centaurium erythraea as novel inhibitors of vascular smooth muscle cell proliferation. Molecules 2015; 20(11): 20381-90.
[http://dx.doi.org/10.3390/molecules201119703] [PMID: 26580586]
[65]
Sezik E, Aslan M, Yesilada E, Ito S. Hypoglycaemic activity of Gentiana olivieri and isolation of the active constituent through bioassay-directed fractionation techniques. Life Sci 2005; 76(11): 1223-38.
[http://dx.doi.org/10.1016/j.lfs.2004.07.024] [PMID: 15642593]
[66]
Khan AU, Mustafa MR, Khan AU, Murugan DD. Hypotensive effect of Gentiana floribunda is mediated through Ca++ antagonism pathway. BMC Complement Altern Med 2012; 12: 121.
[http://dx.doi.org/10.1186/1472-6882-12-121] [PMID: 22883710]
[67]
Baragatti B, Calderone V, Testai L, Martinotti E, Chericoni S, Morelli I. Vasodilator activity of crude methanolic extract of Gentiana kokiana Perr. et Song. (Gentianaceae). J Ethnopharmacol 2002; 79(3): 369-72.
[http://dx.doi.org/10.1016/S0378-8741(01)00405-6] [PMID: 11849844]
[68]
Chericoni S, Testai L, Calderone V, et al. The xanthones gentiacaulein and gentiakochianin are responsible for the vasodilator action of the roots of Gentiana kochiana. Planta Med 2003; 69(8): 770-2.
[http://dx.doi.org/10.1055/s-2003-42784] [PMID: 14531031]
[69]
Lin CN, Kuo SH, Chung MI, Ko FN, Teng CM. A new flavone C-glycoside and antiplatelet and vasorelaxing flavones from Gentiana arisanensis. J Nat Prod 1997; 60(8): 851-3.
[http://dx.doi.org/10.1021/np970011e] [PMID: 9287421]
[70]
Joksić G, Tričković JF, Joksić I. Potential of Gentiana lutea for the treatment of obesity-associated diseases. Curr Pharm Des 2019; 25(18): 2071-6.
[http://dx.doi.org/10.2174/1381612825666190708215743] [PMID: 31538881]
[71]
Lv H, Yu Z, Zheng Y, et al. Isovitexin exerts anti-inflammatory and anti-oxidant activities on lipopolysaccharide-induced acute lung injury by inhibiting MAPK and NF-κB and activating HO-1/Nrf2 pathways. Int J Biol Sci 2016; 12(1): 72-86.
[http://dx.doi.org/10.7150/ijbs.13188] [PMID: 26722219]
[72]
Schmieder A, Schwaiger S, Csordas A, et al. Isogentisin--a novel compound for the prevention of smoking-caused endothelial injury. Atherosclerosis 2007; 194(2): 317-25.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.10.019] [PMID: 17141243]
[73]
Cheng D, Talib J, Stanley CP, et al. Inhibition of MPO (Myeloperoxidase) attenuates endothelial dysfunction in mouse models of vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 39(7): 1448-57.
[http://dx.doi.org/10.1161/ATVBAHA.119.312725] [PMID: 31043077]
[74]
McMullen MK, Whitehouse JM, Towell A. Bitters: time for a new paradigm. Evid Based Complement Alternat Med 2015; 2015670504
[http://dx.doi.org/10.1155/2015/670504] [PMID: 26074998]
[75]
Huang CY, Hsu TC, Kuo WW, et al. The root extract of Gentiana macrophylla pall. Alleviates cardiac apoptosis in lupus prone mice. PLoS One 2015; 10(5)e0127440
[http://dx.doi.org/10.1371/journal.pone.0127440] [PMID: 25985203]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy