Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Effect of Oxidative Stress and Antioxidant Therapies on Pancreatic β-cell Dysfunction: Results from in Vitro and in Vivo Studies

Author(s): Ioanna A. Anastasiou, Ioanna Eleftheriadou, Anastasios Tentolouris, Chrysi Koliaki, Ourania A. Kosta and Nikolaos Tentolouris*

Volume 28 , Issue 7 , 2021

Published on: 26 May, 2020

Page: [1328 - 1346] Pages: 19

DOI: 10.2174/0929867327666200526135642

Price: $65

Abstract

Background: Oxidative stress is a hallmark of many diseases. A growing body of evidence suggests that hyperglycemia-induced oxidative stress plays an important role in pancreatic β-cells dysfunction and apoptosis, as well as in the development and progression of diabetic complications. Considering the vulnerability of pancreatic β-cells to oxidative damage, the induction of endogenous antioxidant enzymes or exogenous antioxidant administration has been proposed to protect pancreatic β-cells from damage.

Objectives: The present review aims to provide evidence of the effect of oxidative stress and antioxidant therapies on pancreatic β-cell function, based on in vitro and in vivo studies.

Methods: The MEDLINE and EMBASE databases were searched to retrieve available data.

Results: Due to poor endogenous antioxidant mechanisms, pancreatic β-cells are extremely sensitive to Reactive Oxygen Species (ROS). Many natural extracts have been tested in vitro in pancreatic β-cell lines in terms of their antioxidant and diabetes mellitus ameliorating effects, and the majority of them have shown a dose-dependent protective role. On the other hand, there is relatively limited evidence regarding the in vitro antioxidant effects of antidiabetic drugs on pancreatic β -cells. Concerning in vivo studies, several natural extracts have shown beneficial effects in the setting of diabetes by decreasing blood glucose and lipid levels, increasing insulin sensitivity, and by up-regulating intrinsic antioxidant enzyme activity. However, there is limited evidence obtained from in vivo studies regarding antidiabetic drugs.

Conclusion: Antioxidants hold promise for developing strategies aimed at the prevention or treatment of diabetes mellitus associated with pancreatic β-cells dysfunction, as supported by in vitro and in vivo studies. However, more in vitro studies are required for drugs.

Keywords: Antioxidant enzymes, biomarkers, diabetes mellitus, oxidative stress, pancreatic β-cells, reactive oxygen species, in vitro studies, in vivo studies.

[1]
Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 diabetes mellitus: a review of current trends. Oman Med. J., 2012, 27(4), 269-273.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[2]
Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress-a concise review. Saudi Pharm. J., 2016, 24(5), 547-553.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
[3]
Li, N.; Frigerio, F.; Maechler, P. The sensitivity of pancreatic beta-cells to mitochondrial injuries triggered by lipotoxicity and oxidative stress. Biochem. Soc. Trans., 2008, 36(Pt 5), 930-934.
[http://dx.doi.org/10.1042/BST0360930] [PMID: 18793163]
[4]
Koliaki, C.; Roden, M. Do mitochondria care about insulin resistance? Mol. Metab., 2014, 3(4), 351-353.
[http://dx.doi.org/10.1016/j.molmet.2014.04.004] [PMID: 24944895]
[5]
Montgomery, M.K.; Turner, N. Mitochondrial dysfunction and insulin resistance: an update. Endocr. Connect., 2015, 4(1), R1-R15.
[http://dx.doi.org/10.1530/EC-14-0092] [PMID: 25385852]
[6]
Koliaki, C.; Roden, M. Alterations of mitochondrial function and insulin sensitivity in human obesity and diabetes mellitus. Annu. Rev. Nutr., 2016, 36, 337-367.
[http://dx.doi.org/10.1146/annurev-nutr-071715-050656] [PMID: 27146012]
[7]
Erejuwa, O.O.; Sulaiman, S.A.; Wahab, M.S.A.; Salam, S.K.; Salleh, M.S.M.; Gurtu, S. Antioxidant protective effect of glibenclamide and metformin in combination with honey in pancreas of streptozotocin-induced diabetic rats. Int. J. Mol. Sci., 2010, 11(5), 2056-2066.
[http://dx.doi.org/10.3390/ijms11052056] [PMID: 20559501]
[8]
Acharya, J.D.; Ghaskadbi, S.S. Islets and their antioxidant defense. Islets, 2010, 2(4), 225-235.
[http://dx.doi.org/10.4161/isl.2.4.12219] [PMID: 21099317]
[9]
Xavier, G.D.S. The cells of the islets of langerhans. J. Clin. Med., 2018, 7(3), 7.
[http://dx.doi.org/10.3390/jcm7030054] [PMID: 29534517]
[10]
Brereton, M.F.; Vergari, E.; Zhang, Q.; Clark, A. Alpha-, delta- and pp-cells: are they the architectural cornerstones of islet structure and co-ordination? J. Histochem. Cytochem., 2015, 63(8), 575-591.
[http://dx.doi.org/10.1369/0022155415583535] [PMID: 26216135]
[11]
Ray, P.D.; Huang, B-W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal., 2012, 24(5), 981-990.
[http://dx.doi.org/10.1016/j.cellsig.2012.01.008] [PMID: 22286106]
[12]
Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol., 2014, 24(10), R453-R462.
[http://dx.doi.org/10.1016/j.cub.2014.03.034] [PMID: 24845678]
[13]
Patlevič, P.; Vašková, J.; Švorc, P., Jr; Vaško, L.; Švorc, P. Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integr. Med. Res., 2016, 5(4), 250-258.
[http://dx.doi.org/10.1016/j.imr.2016.07.004] [PMID: 28462126]
[14]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[http://dx.doi.org/10.1038/nrd2803] [PMID: 19478820]
[15]
Shukla, V.; Mishra, S.K.; Pant, H.C. Oxidative stress in neurodegeneration. Adv. Pharmacol. Sci., 2011, 2011, 572634-572634.
[http://dx.doi.org/10.1155/2011/572634] [PMID: 21941533]
[16]
Peluso, I.; Morabito, G.; Urban, L.; Ioannone, F.; Serafi, M. Oxidative stress in atherosclerosis development: the central role of LDL and oxidative burst. Endocr. Metab. Immune Disord. Drug Targets, 2012, 12(4), 351-360.
[17]
Yang, H.; Jin, X.; Lam, C.W.K.; Yan, S.K. Oxidative stress and diabetes mellitus. Clin. Chem. Lab. Med., 2011, 49(11), 1773-1782.
[http://dx.doi.org/10.1515/cclm.2011.250] [PMID: 21810068]
[18]
Haigis, M.C.; Yankner, B.A. The aging stress response. Mol. Cell, 2010, 40(2), 333-344.
[http://dx.doi.org/10.1016/j.molcel.2010.10.002] [PMID: 20965426]
[19]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[20]
Rizzo, A.M.; Berselli, P.; Zava, S.; Montorfano, G.; Negroni, M.; Corsetto, P.; Berra, B. Endogenous antioxidants and radical scavengers. Adv. Exp. Med. Biol., 2010, 698, 52-67.
[http://dx.doi.org/10.1007/978-1-4419-7347-4_5] [PMID: 21520703]
[21]
Lo, W.J.; Chiou, Y.C.; Hsu, Y.T.; Lam, W.S.; Chang, M.Y.; Jao, S.C.; Li, W.S. Enzymatic and nonenzymatic synthesis of glutathione conjugates: application to the understanding of a parasite’s defense system and alternative to the discovery of potent glutathione S-transferase inhibitors. Bioconjug. Chem., 2007, 18(1), 109-120.
[http://dx.doi.org/10.1021/bc0601727] [PMID: 17226963]
[22]
Rhee, S.G. Overview on peroxiredoxin. Mol. Cells, 2016, 39(1), 1-5.
[http://dx.doi.org/10.14348/molcells.2016.2368] [PMID: 26831451]
[23]
Glorieux, C.; Calderon, P.B. Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol. Chem., 2017, 398(10), 1095-1108.
[http://dx.doi.org/10.1515/hsz-2017-0131] [PMID: 28384098]
[24]
Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci., 2018, 63(1), 68-78.
[http://dx.doi.org/10.1016/j.advms.2017.05.005] [PMID: 28822266]
[25]
Ruttkay-Nedecky, B.; Nejdl, L.; Gumulec, J.; Zitka, O.; Masarik, M.; Eckschlager, T.; Stiborova, M.; Adam, V.; Kizek, R. The role of metallothionein in oxidative stress. Int. J. Mol. Sci., 2013, 14(3), 6044-6066.
[http://dx.doi.org/10.3390/ijms14036044] [PMID: 23502468]
[26]
Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr. J., 2016, 15(1), 71-71.
[http://dx.doi.org/10.1186/s12937-016-0186-5] [PMID: 27456681]
[27]
Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: harms and benefits for human health. Oxid. Med. Cell. Longev., 2017, 20178416763
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[28]
Bouayed, J.; Bohn, T. Exogenous antioxidants-double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell. Longev., 2010, 3(4), 228-237.
[http://dx.doi.org/10.4161/oxim.3.4.12858] [PMID: 20972369]
[29]
Supale, S.; Li, N.; Brun, T.; Maechler, P. Mitochondrial dysfunction in pancreatic β cells. Trends Endocrinol. Metab., 2012, 23(9), 477-487.
[http://dx.doi.org/10.1016/j.tem.2012.06.002] [PMID: 22766318]
[30]
Pi, J.; Collins, S. Reactive oxygen species and uncoupling protein 2 in pancreatic β-cell function. Diabetes Obes. Metab., 2010, 12(Suppl. 2), 141-148.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01269.x] [PMID: 21029311]
[31]
Wang, J.; Wang, H. Oxidative stress in pancreatic beta cell regeneration. Oxid. Med. Cell. Longev., 2017, 2017, 1930-261.
[http://dx.doi.org/10.1155/2017/1930261] [PMID: 28845211]
[32]
Zhao, F.; Wang, Q. The protective effect of peroxiredoxin II on oxidative stress induced apoptosis in pancreatic β-cells. Cell Biosci., 2012, 2(1), 22.
[http://dx.doi.org/10.1186/2045-3701-2-22] [PMID: 22709359]
[33]
Lim, S.; Rashid, M.A.; Jang, M.; Kim, Y.; Won, H.; Lee, J.; Woo, J.T.; Kim, Y.S.; Murphy, M.P.; Ali, L.; Ha, J.; Kim, S.S. Mitochondria-targeted antioxidants protect pancreatic β-cells against oxidative stress and improve insulin secretion in glucotoxicity and glucolipotoxicity. Cell. Physiol. Biochem., 2011, 28(5), 873-886.
[http://dx.doi.org/10.1159/000335802] [PMID: 22178940]
[34]
Escribano-Lopez, I.; Diaz-Morales, N.; Rovira-Llopis, S.; de Marañon, A.M.; Orden, S.; Alvarez, A.; Bañuls, C.; Rocha, M.; Murphy, M.P.; Hernandez-Mijares, A.; Victor, V.M. The mitochondria-targeted antioxidant MitoQ modulates oxidative stress, inflammation and leukocyte-endothelium interactions in leukocytes isolated from type 2 diabetic patients. Redox Biol., 2016, 10, 200-205.
[http://dx.doi.org/10.1016/j.redox.2016.10.017] [PMID: 27810734]
[35]
Cerf, M.E. Beta cell dysfunction and insulin resistance. Front. Endocrinol. (Lausanne), 2013, 4, 37.
[http://dx.doi.org/10.3389/fendo.2013.00037] [PMID: 23542897]
[36]
Chen, C.; Cohrs, C.M.; Stertmann, J.; Bozsak, R.; Speier, S. Human beta cell mass and function in diabetes: recent advances in knowledge and technologies to understand disease pathogenesis. Mol. Metab., 2017, 6(9), 943-957.
[http://dx.doi.org/10.1016/j.molmet.2017.06.019] [PMID: 28951820]
[37]
Eleftheriadou, I.; Tentolouris, A.; Grigoropoulou, P.; Tsilingiris, D.; Anastasiou, I.; Kokkinos, A.; Perrea, D.; Katsilambros, N.; Tentolouris, N. The association of diabetic microvascular and macrovascular disease with cutaneous circulation in patients with type 2 diabetes mellitus. J. Diabetes Complications, 2019, 33(2), 165-170.
[http://dx.doi.org/10.1016/j.jdiacomp.2018.10.008] [PMID: 30446479]
[38]
Madonna, R.; De Caterina, R. Cellular and molecular mechanisms of vascular injury in diabetes-part I: pathways of vascular disease in diabetes. Vascul. Pharmacol., 2011, 54(3-6), 68-74.
[http://dx.doi.org/10.1016/j.vph.2011.03.005] [PMID: 21453786]
[39]
Jang, S.M.; Kim, M.J.; Choi, M.S.; Kwon, E.Y.; Lee, M.K. Inhibitory effects of ursolic acid on hepatic polyol pathway and glucose production in streptozotocin-induced diabetic mice. Metabolism, 2010, 59(4), 512-519.
[http://dx.doi.org/10.1016/j.metabol.2009.07.040] [PMID: 19846180]
[40]
Tang, W.H.; Martin, K.A.; Hwa, J. Aldose reductase, oxidative stress, and diabetic mellitus. Front. Pharmacol., 2012, 3, 87.
[http://dx.doi.org/10.3389/fphar.2012.00087] [PMID: 22582044]
[41]
Ohmura, C.; Watada, H.; Azuma, K.; Shimizu, T.; Kanazawa, A.; Ikeda, F.; Yoshihara, T.; Fujitani, Y.; Hirose, T.; Tanaka, Y.; Kawamori, R. Aldose reductase inhibitor, epalrestat, reduces lipid hydroperoxides in type 2 diabetes. Endocr. J., 2009, 56(1), 149-156.
[http://dx.doi.org/10.1507/endocrj.K08E-237] [PMID: 18997444]
[42]
Yeung, C.M.; Lo, A.C.; Cheung, A.K.; Chung, S.S.; Wong, D.; Chung, S.K. More severe type 2 diabetes-associated ischemic stroke injury is alleviated in aldose reductase-deficient mice. J. Neurosci. Res., 2010, 88(9), 2026-2034.
[http://dx.doi.org/10.1002/jnr.22349] [PMID: 20143423]
[43]
Fardini, Y.; Masson, E.; Boudah, O.; Ben Jouira, R.; Cosson, C.; Pierre-Eugene, C.; Kuo, M.S.; Issad, T. O-GlcNAcylation of FoxO1 in pancreatic β cells promotes Akt inhibition through an IGFBP1-mediated autocrine mechanism. FASEB J., 2014, 28(2), 1010-1021.
[http://dx.doi.org/10.1096/fj.13-238378] [PMID: 24174424]
[44]
Issad, T.; Masson, E.; Pagesy, P. O-GlcNAc modification, insulin signaling and diabetic complications. Diabetes Metab., 2010, 36(6 Pt 1), 423-435.
[http://dx.doi.org/10.1016/j.diabet.2010.09.001] [PMID: 21074472]
[45]
Ma, J.; Hart, G.W. Protein O-GlcNAcylation in diabetes and diabetic complications. Expert Rev. Proteomics, 2013, 10(4), 365-380.
[http://dx.doi.org/10.1586/14789450.2013.820536] [PMID: 23992419]
[46]
Rajapakse, A.G.; Ming, X-F.; Carvas, J.M.; Yang, Z. O-linked beta-N-acetylglucosamine during hyperglycemia exerts both anti-inflammatory and pro-oxidative properties in the endothelial system. Oxid. Med. Cell. Longev., 2009, 2(3), 172-175.
[http://dx.doi.org/10.4161/oxim.2.3.8482] [PMID: 20592773]
[47]
Goldberg, H.; Whiteside, C.; Fantus, I.G. O-linked β-N-acetylglucosamine supports p38 MAPK activation by high glucose in glomerular mesangial cells. Am. J. Physiol. Endocrinol. Metab., 2011, 301(4), E713-E726.
[http://dx.doi.org/10.1152/ajpendo.00108.2011] [PMID: 21712532]
[48]
Geraldes, P.; King, G.L. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ. Res., 2010, 106(8), 1319-1331.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.217117] [PMID: 20431074]
[49]
Feng, B.; Ruiz, M.A.; Chakrabarti, S. Oxidative-stress-induced epigenetic changes in chronic diabetic complications. Can. J. Physiol. Pharmacol., 2013, 91(3), 213-220.
[http://dx.doi.org/10.1139/cjpp-2012-0251] [PMID: 23537434]
[50]
Teshima, Y.; Takahashi, N.; Nishio, S.; Saito, S.; Kondo, H.; Fukui, A.; Aoki, K.; Yufu, K.; Nakagawa, M.; Saikawa, T. Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase. Circ. J., 2014, 78(2), 300-306.
[http://dx.doi.org/10.1253/circj.CJ-13-1187] [PMID: 24334638]
[51]
Höhn, A.; König, J.; Jung, T. Metabolic syndrome, redox state, and the proteasomal system. Antioxid. Redox Signal., 2016, 25(16), 902-917.
[http://dx.doi.org/10.1089/ars.2016.6815] [PMID: 27412984]
[52]
Zhao, Z.; Zhao, C.; Zhang, X.H.; Zheng, F.; Cai, W.; Vlassara, H.; Ma, Z.A. Advanced glycation end products inhibit glucose-stimulated insulin secretion through nitric oxide-dependent inhibition of cytochrome c oxidase and adenosine triphosphate synthesis. Endocrinology, 2009, 150(6), 2569-2576.
[http://dx.doi.org/10.1210/en.2008-1342] [PMID: 19246537]
[53]
Shu, T.; Zhu, Y.; Wang, H.; Lin, Y.; Ma, Z.; Han, X. AGEs decrease insulin synthesis in pancreatic β-cell by repressing Pdx-1 protein expression at the post-translational level. PLoS One, 2011, 6(4)e18782
[http://dx.doi.org/10.1371/journal.pone.0018782] [PMID: 21533167]
[54]
Hachiya, H.; Miura, Y.; Inoue, K.; Park, K.H.; Takeuchi, M.; Kubota, K. Advanced glycation end products impair glucose-induced insulin secretion from rat pancreatic β-cells. J. Hepatobiliary Pancreat. Sci., 2014, 21(2), 134-141.
[http://dx.doi.org/10.1002/jhbp.12] [PMID: 23798335]
[55]
Mira, M.L.; Martinho, F.; Azevedo, M.S.; Manso, C.F. Oxidative inhibition of red blood cell ATPases by glyceraldehyde. Biochim. Biophys. Acta, 1991, 1060(3), 257-261.
[http://dx.doi.org/10.1016/S0005-2728(05)80315-9] [PMID: 1836354]
[56]
Wolff, S.P.; Dean, R.T. Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. Biochem. J., 1987, 245(1), 243-250.
[http://dx.doi.org/10.1042/bj2450243] [PMID: 3117042]
[57]
Hauck, A.K.; Bernlohr, D.A. Oxidative stress and lipotoxicity. J. Lipid Res., 2016, 57(11), 1976-1986.
[http://dx.doi.org/10.1194/jlr.R066597] [PMID: 27009116]
[58]
Yang, H.; Li, X. The role of fatty acid metabolism and lipotoxicity in pancreatic β-cell injury: identification of potential therapeutic targets. Acta Pharm. Sin. B, 2012, 2(4), 396-402.
[http://dx.doi.org/10.1016/j.apsb.2012.05.003]
[59]
Prudente, S.; Morini, E.; Trischitta, V. Insulin signaling regulating genes: effect on T2DM and cardiovascular risk. Nat. Rev. Endocrinol., 2009, 5(12), 682-693.
[http://dx.doi.org/10.1038/nrendo.2009.215] [PMID: 19924153]
[60]
Ashcroft, F.M.; Rorsman, P. Diabetes mellitus and the β cell: the last ten years. Cell, 2012, 148(6), 1160-1171.
[http://dx.doi.org/10.1016/j.cell.2012.02.010] [PMID: 22424227]
[61]
Stefanovski, D.; Richey, J.M.; Woolcott, O.; Lottati, M.; Zheng, D.; Harrison, L.N.; Ionut, V.; Kim, S.P.; Hsu, I.; Bergman, R.N. Consistency of the disposition index in the face of diet induced insulin resistance: potential role of FFA. PLoS One, 2011, 6(3), e18134-e18134.
[http://dx.doi.org/10.1371/journal.pone.0018134] [PMID: 21479217]
[62]
Kristinsson, H.; Smith, D.M.; Bergsten, P.; Sargsyan, E. FFAR1 is involved in both the acute and chronic effects of palmitate on insulin secretion. Endocrinology, 2013, 154(11), 4078-4088.
[http://dx.doi.org/10.1210/en.2013-1352] [PMID: 24035997]
[63]
Marseglia, L.; Manti, S.; D’Angelo, G.; Nicotera, A.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative stress in obesity: a critical component in human diseases. Int. J. Mol. Sci., 2014, 16(1), 378-400.
[http://dx.doi.org/10.3390/ijms16010378] [PMID: 25548896]
[64]
Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes. Res. Clin. Pract., 2013, 7(5), e330-e341.
[http://dx.doi.org/10.1016/j.orcp.2013.05.004] [PMID: 24455761]
[65]
Zhou, S.; Yu, D.; Ning, S.; Zhang, H.; Jiang, L.; He, L.; Li, M.; Sun, M. Augmented Rac1 expression and activity are associated with oxidative stress and decline of β cell function in obesity. Cell. Physiol. Biochem., 2015, 35(6), 2135-2148.
[http://dx.doi.org/10.1159/000374019] [PMID: 25896148]
[66]
Fernández-Sánchez, A.; Madrigal-Santillán, E.; Bautista, M.; Esquivel-Soto, J.; Morales-González, A.; Esquivel-Chirino, C.; Durante-Montiel, I.; Sánchez-Rivera, G.; Valadez-Vega, C.; Morales-González, J.A. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci., 2011, 12(5), 3117-3132.
[http://dx.doi.org/10.3390/ijms12053117] [PMID: 21686173]
[67]
Donath, M.Y.; Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol., 2011, 11(2), 98-107.
[http://dx.doi.org/10.1038/nri2925] [PMID: 21233852]
[68]
Choi, H.J.; Hwang, S.; Lee, S-H.; Lee, Y.R.; Shin, J.; Park, K.S.; Cho, Y.M. Genome-wide identification of palmitate-regulated immediate early genes and target genes in pancreatic beta-cells reveals a central role of NF-κB. Mol. Biol. Rep., 2012, 39(6), 6781-6789.
[http://dx.doi.org/10.1007/s11033-012-1503-5] [PMID: 22302392]
[69]
Tiwari, B.K.; Pandey, K.B.; Abidi, A.B.; Rizvi, S.I. Markers of oxidative stress during diabetes mellitus. J. Biomark., 2013, 2013378790
[http://dx.doi.org/10.1155/2013/378790] [PMID: 26317014]
[70]
Dorcely, B.; Katz, K.; Jagannathan, R.; Chiang, S.S.; Oluwadare, B.; Goldberg, I.J.; Bergman, M. Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab. Syndr. Obes., 2017, 10, 345-361.
[http://dx.doi.org/10.2147/DMSO.S100074] [PMID: 28860833]
[71]
Srivastava, K.K.; Kumar, R. Stress, oxidative injury and disease. Indian J. Clin. Biochem., 2015, 30(1), 3-10.
[http://dx.doi.org/10.1007/s12291-014-0441-5] [PMID: 25646036]
[72]
Pandey, K.B.; Mishra, N.; Rizvi, S.I. Protein oxidation biomarkers in plasma of type 2 diabetic patients. Clin. Biochem., 2010, 43(4-5), 508-511.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.11.011] [PMID: 19941844]
[73]
Pérez-Matute, P.; Zulet, M.A.; Martínez, J.A. Reactive species and diabetes: counteracting oxidative stress to improve health. Curr. Opin. Pharmacol., 2009, 9(6), 771-779.
[http://dx.doi.org/10.1016/j.coph.2009.08.005] [PMID: 19766058]
[74]
Matough, F.A.; Budin, S.B.; Hamid, Z.A.; Alwahaibi, N.; Mohamed, J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ. Med. J., 2012, 12(1), 5-18.
[http://dx.doi.org/10.12816/0003082] [PMID: 22375253]
[75]
Garcia-Bailo, B.; El-Sohemy, A.; Haddad, P.S.; Arora, P.; Benzaied, F.; Karmali, M.; Badawi, A.; Vitamins, D. C, and E in the prevention of type 2 diabetes mellitus: modulation of inflammation and oxidative stress. Biologics, 2011, 5, 7-19.
[http://dx.doi.org/10.2147/btt.s14417]] [PMID: 21383912]
[76]
Konijeti, G.G.; Arora, P.; Boylan, M.R.; Song, Y.; Huang, S.; Harrell, F.; Newton-Cheh, C.; O’Neill, D.; Korzenik, J.; Wang, T.J.; Chan, A.T. Vitamin D supplementation modulates T cell-mediated immunity in humans: results from a randomized control trial. J. Clin. Endocrinol. Metab., 2016, 101(2), 533-538.
[http://dx.doi.org/10.1210/jc.2015-3599] [PMID: 26653112]
[77]
Patel, H.; Chen, J.; Das, K.C.; Kavdia, M. Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC. Cardiovasc. Diabetol., 2013, 12, 142-142.
[http://dx.doi.org/10.1186/1475-2840-12-142] [PMID: 24093550]
[78]
Tentolouris, A.; Eleftheriadou, I.; Tzeravini, E.; Tsilingiris, D.; Paschou, S.A.; Siasos, G.; Tentolouris, N. Endothelium as a therapeutic target in diabetes mellitus: from basic mechanisms to clinical practice. Curr. Med. Chem., 2020, 27(7), 1089-1131.
[http://dx.doi.org/10.2174/0929867326666190119154152] [PMID: 30663560]
[79]
Skelin, M.; Rupnik, M.; Cencic, A. Pancreatic beta cell lines and their applications in diabetes mellitus research. ALTEX, 2010, 27(2), 105-113.
[http://dx.doi.org/10.14573/altex.2010.2.105] [PMID: 20686743]
[80]
Koh, G.; Yang, E-J.; Kim, M-K.; Lee, S.A.; Lee, D-H. Alpha-lipoic acid treatment reverses 2-deoxy-D-ribose-induced oxidative damage and suppression of insulin expression in pancreatic beta-cells. Biol. Pharm. Bull., 2013, 36(10), 1570-1576.
[http://dx.doi.org/10.1248/bpb.b13-00292] [PMID: 23912745]
[81]
Wu, C.H.; Hsieh, H.T.; Lin, J.A.; Yen, G.C. Alternanthera paronychioides protects pancreatic β-cells from glucotoxicity by its antioxidant, antiapoptotic and insulin secretagogue actions. Food Chem., 2013, 139(1-4), 362-370.
[http://dx.doi.org/10.1016/j.foodchem.2013.01.026] [PMID: 23561118]
[82]
Lee, Y.J.; Suh, K.S.; Choi, M.C.; Chon, S.; Oh, S.; Woo, J.T.; Kim, S.W.; Kim, J.W.; Kim, Y.S. Kaempferol protects HIT-T15 pancreatic beta cells from 2-deoxy-D-ribose-induced oxidative damage. Phytother. Res., 2010, 24(3), 419-423.
[http://dx.doi.org/10.1002/ptr.2983] [PMID: 19827031]
[83]
Jeong, G.S.; Lee, D.S.; Song, M.Y.; Park, B.H.; Kang, D.G.; Lee, H.S.; Kwon, K.B.; Kim, Y.C. Butein from Rhus verniciflua protects pancreatic β cells against cytokine-induced toxicity mediated by inhibition of nitric oxide formation. Biol. Pharm. Bull., 2011, 34(1), 97-102.
[http://dx.doi.org/10.1248/bpb.34.97] [PMID: 21212525]
[84]
Li, X.L.; Xu, G.; Chen, T.; Wong, Y.S.; Zhao, H.L.; Fan, R.R.; Gu, X.M.; Tong, P.C.; Chan, J.C. Phycocyanin protects INS-1E pancreatic beta cells against human islet amyloid polypeptide-induced apoptosis through attenuating oxidative stress and modulating JNK and p38 mitogen-activated protein kinase pathways. Int. J. Biochem. Cell Biol., 2009, 41(7), 1526-1535.
[http://dx.doi.org/10.1016/j.biocel.2009.01.002] [PMID: 19166964]
[85]
Martín, M.Á.; Fernández-Millán, E.; Ramos, S.; Bravo, L.; Goya, L. Cocoa flavonoid epicatechin protects pancreatic beta cell viability and function against oxidative stress. Mol. Nutr. Food Res., 2014, 58(3), 447-456.
[http://dx.doi.org/10.1002/mnfr.201300291] [PMID: 24115486]
[86]
Youl, E.; Bardy, G.; Magous, R.; Cros, G.; Sejalon, F.; Virsolvy, A.; Richard, S.; Quignard, J.F.; Gross, R.; Petit, P.; Bataille, D.; Oiry, C. Quercetin potentiates insulin secretion and protects INS-1 pancreatic β-cells against oxidative damage via the ERK1/2 pathway. Br. J. Pharmacol., 2010, 161(4), 799-814.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00910.x] [PMID: 20860660]
[87]
Sun, C-D.; Zhang, B.; Zhang, J-K.; Xu, C-J.; Wu, Y-L.; Li, X.; Chen, K-S. Cyanidin-3-glucoside-rich extract from Chinese bayberry fruit protects pancreatic β cells and ameliorates hyperglycemia in streptozotocin-induced diabetic mice. J. Med. Food, 2012, 15(3), 288-298.
[http://dx.doi.org/10.1089/jmf.2011.1806] [PMID: 22181073]
[88]
Zhang, B.; Kang, M.; Xie, Q.; Xu, B.; Sun, C.; Chen, K.; Wu, Y. Anthocyanins from Chinese bayberry extract protect β cells from oxidative stress-mediated injury via HO-1 upregulation. J. Agric. Food Chem., 2011, 59(2), 537-545.
[http://dx.doi.org/10.1021/jf1035405] [PMID: 21166417]
[89]
Hao, F.; Kang, J.; Cao, Y.; Fan, S.; Yang, H.; An, Y.; Pan, Y.; Tie, L.; Li, X. Curcumin attenuates palmitate-induced apoptosis in MIN6 pancreatic β-cells through PI3K/Akt/FoxO1 and mitochondrial survival pathways. Apoptosis, 2015, 20(11), 1420-1432.
[http://dx.doi.org/10.1007/s10495-015-1150-0] [PMID: 26330141]
[90]
Shah, P.; Ardestani, A.; Dharmadhikari, G.; Laue, S.; Schumann, D.M.; Kerr-Conte, J.; Pattou, F.; Klein, T.; Maedler, K. The DPP-4 inhibitor linagliptin restores β-cell function and survival in human isolated islets through GLP-1 stabilization. J. Clin. Endocrinol. Metab., 2013, 98(7), E1163-E1172.
[http://dx.doi.org/10.1210/jc.2013-1029] [PMID: 23633194]
[91]
Sliwinska, A.; Rogalska, A.; Szwed, M.; Kasznicki, J.; Jozwiak, Z.; Drzewoski, J. Gliclazide may have an antiapoptotic effect related to its antioxidant properties in human normal and cancer cells. Mol. Biol. Rep., 2012, 39(5), 5253-5267.
[http://dx.doi.org/10.1007/s11033-011-1323-z] [PMID: 22183301]
[92]
Rahigude, A.; Bhutada, P.; Kaulaskar, S.; Aswar, M.; Otari, K. Participation of antioxidant and cholinergic system in protective effect of naringenin against type-2 diabetes-induced memory dysfunction in rats. Neuroscience, 2012, 226, 62-72.
[http://dx.doi.org/10.1016/j.neuroscience.2012.09.026] [PMID: 22999973]
[93]
Lee, E.; Ryu, G.R.; Ko, S.H.; Ahn, Y.B.; Yoon, K.H.; Ha, H.; Song, K.H. Antioxidant treatment may protect pancreatic beta cells through the attenuation of islet fibrosis in an animal model of type 2 diabetes. Biochem. Biophys. Res. Commun., 2011, 414(2), 397-402.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.087] [PMID: 21971557]
[94]
Alam, M.M.; Meerza, D.; Naseem, I. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sci., 2014, 109(1), 8-14.
[http://dx.doi.org/10.1016/j.lfs.2014.06.005] [PMID: 24946265]
[95]
Palsamy, P.; Subramanian, S. Ameliorative potential of resveratrol on proinflammatory cytokines, hyperglycemia mediated oxidative stress, and pancreatic beta-cell dysfunction in streptozotocin-nicotinamide-induced diabetic rats. J. Cell. Physiol., 2010, 224(2), 423-432.
[http://dx.doi.org/10.1002/jcp.22138] [PMID: 20333650]
[96]
Patel, D.K.; Kumar, R.; Laloo, D.; Hemalatha, S. Natural medicines from plant source used for therapy of diabetes mellitus: an overview of its pharmacological aspects. Asian Pac. J. Trop. Dis., 2012, 2(3), 239-250.
[http://dx.doi.org/10.1016/S2222-1808(12)60054-1]
[97]
Fu, Z.; Zhang, W.; Zhen, W.; Lum, H.; Nadler, J.; Bassaganya-Riera, J.; Jia, Z.; Wang, Y.; Misra, H.; Liu, D. Genistein induces pancreatic β-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice. Endocrinology, 2010, 151(7), 3026-3037.
[http://dx.doi.org/10.1210/en.2009-1294] [PMID: 20484465]
[98]
Gupta, R.; Sharma, A.K.; Dobhal, M.P.; Sharma, M.C.; Gupta, R.S. Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. J. Diabetes, 2011, 3(1), 29-37.
[http://dx.doi.org/10.1111/j.1753-0407.2010.00107.x] [PMID: 21143769]
[99]
Prabhakar, P.K.; Prasad, R.; Ali, S.; Doble, M. Synergistic interaction of ferulic acid with commercial hypoglycemic drugs in streptozotocin induced diabetic rats. Phytomedicine, 2013, 20(6), 488-494.
[http://dx.doi.org/10.1016/j.phymed.2012.12.004] [PMID: 23490007]
[100]
Sellamuthu, P.S.; Arulselvan, P.; Muniappan, B.P.; Fakurazi, S.; Kandasamy, M. Mangiferin from Salacia chinensis prevents oxidative stress and protects pancreatic β-cells in streptozotocin-induced diabetic rats. J. Med. Food, 2013, 16(8), 719-727.
[http://dx.doi.org/10.1089/jmf.2012.2480] [PMID: 23957355]
[101]
Zhou, J.; Zhou, S.; Zeng, S. Experimental diabetes treated with trigonelline: effect on β cell and pancreatic oxidative parameters. Fundam. Clin. Pharmacol., 2013, 27(3), 279-287.
[http://dx.doi.org/10.1111/j.1472-8206.2011.01022.x] [PMID: 22172053]
[102]
Shimoda, M.; Kanda, Y.; Hamamoto, S.; Tawaramoto, K.; Hashiramoto, M.; Matsuki, M.; Kaku, K. The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia, 2011, 54(5), 1098-1108.
[http://dx.doi.org/10.1007/s00125-011-2069-9] [PMID: 21340625]
[103]
Hamamoto, S.; Kanda, Y.; Shimoda, M.; Tatsumi, F.; Kohara, K.; Tawaramoto, K.; Hashiramoto, M.; Kaku, K. Vildagliptin preserves the mass and function of pancreatic β cells via the developmental regulation and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetes Obes. Metab., 2013, 15(2), 153-163.
[http://dx.doi.org/10.1111/dom.12005] [PMID: 22950702]
[104]
Mahadevan, J.; Parazzoli, S.; Oseid, E.; Hertzel, A.V.; Bernlohr, D.A.; Vallerie, S.N.; Liu, C.Q.; Lopez, M.; Harmon, J.S.; Robertson, R.P. Ebselen treatment prevents islet apoptosis, maintains intranuclear Pdx-1 and MafA levels, and preserves β-cell mass and function in ZDF rats. Diabetes, 2013, 62(10), 3582-3588.
[http://dx.doi.org/10.2337/db13-0357] [PMID: 23801580]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy