Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Carbon Nanotubes: An Emerging Drug Delivery Carrier in Cancer Therapeutics

Author(s): Biman Kumar Panigrahi and Amit Kumar Nayak*

Volume 17, Issue 7, 2020

Page: [558 - 576] Pages: 19

DOI: 10.2174/1567201817999200508092821

Price: $65

Abstract

Background: The scope of nanotechnology has been extended to almost every sphere of our daily life. As a result of this, nanocarriers like Carbon Nanotubes (CNTs) are gaining considerable attention for their use in various therapeutic and diagnostic applications.

Objective: The objective of the current article is to review various important features of CNTs that make them as efficient carriers for anticancer drug delivery in cancer therapeutics.

Methods: In this review article, different works of literature are reported on various prospective applications of CNTs in the targeting of multiple kinds of cancerous cells of different organs via the loading of various anticancer agents.

Results: Actually, CNTs are the 3rd allotropic type of the carbon-fullerenes that are a part of the cylindrical tubular architecture. CNTs possess some excellent physicochemical characteristics and unique structural features that provide an effective platform to deliver anticancer drugs to target specific sites for achieving a high level of therapeutic effectiveness even in cancer therapeutics. For better results, CNTs are functionalized and modified with different classes of therapeutically bioactive molecules via the formation of stable covalent bonding or by the use of supramolecular assemblies based on the noncovalent interaction(s). In recent years, the applications of CNTs for the delivery of various kinds of anticancer drugs and targeting of tumor sites have been reported by various research groups.

Conclusion: CNTs represent an emerging nanocarrier material for the delivery and targeting of numerous anticancer drugs in cancer therapeutics.

Keywords: Carbon nanotubes, nanotechnology, drug delivery, cancer therapeutics, chitosan, doxorubicin (DOX).

Graphical Abstract
[1]
Fan, Z.; Fu, P.P.; Yu, H.; Ray, P.C. Theranostic nanomedicine for cancer detection and treatment. Yao Wu Shi Pin Fen Xi, 2014, 22(1), 3-17.
[http://dx.doi.org/10.1016/j.jfda.2014.01.001] [PMID: 24673900]
[2]
Sheikhpour, M.; Golbabaie, A.; Kasaeian, A. Carbon nanotubes: a review of novel strategies for cancer diagnosis and treatment. Mater. Sci. Eng. C, 2017, 76, 1289-1304.
[http://dx.doi.org/10.1016/j.msec.2017.02.132] [PMID: 28482496]
[3]
Sharma, H.L.; Sharma, K.K. Principles of Pharmacology, 1st ed; Paras Publishing Hyderabad, India , 2007, p. 977.
[4]
world health organisation (who), cancer, fact sheet, #297, 2009.
[5]
Jevan, F.T.; Finley, S.J.; Can, I.; Salhotra, A.; Malhotra, A.; Soni, S. Aberrant signaling pathways, Hallmark of cancer cells and target for nanotherapeutics. In:Advanced Theranostic Materials; Tiwari, A.; Patra, H.K.; Choi, J.W., Eds.; Scrivener Publishing LLC., 2015, pp. 3-36.
[6]
Mahajan, S.; Patharkar, A.; Kuche, K.; Maheshwari, R.; Deb, P.K.; Kalia, K.; Tekade, R.K. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int. J. Pharm., 2018, 548(1), 540-558.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.027] [PMID: 29997043]
[7]
Aggarwal, S. Targeted cancer therapies. Nat. Rev. Drug Discov., 2010, 9(6), 427-428.
[http://dx.doi.org/10.1038/nrd3186] [PMID: 20514063]
[8]
Helleday, T.; Petermann, E.; Lundin, C.; Hodgson, B.; Sharma, R.A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer, 2008, 8(3), 193-204.
[http://dx.doi.org/10.1038/nrc2342] [PMID: 18256616]
[9]
Chaney, S.G.; Campbell, S.L.; Temple, B.; Bassett, E.; Wu, Y.; Faldu, M. Protein interactions with platinum-DNA adducts: from structure to function. J. Inorg. Biochem., 2004, 98(10), 1551-1559.
[http://dx.doi.org/10.1016/j.jinorgbio.2004.04.024] [PMID: 15458816]
[10]
Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584.
[http://dx.doi.org/10.1038/nrc2167] [PMID: 17625587]
[11]
Prakash, S.; Malhotra, W. Shao, Tomaro-Duchesneau, C.; Abbasi, S. Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carrier for cancer therapy. Adv. Drug Deliv. Rev., 2011, 63, 1340-1351.
[http://dx.doi.org/10.1016/j.addr.2011.06.013] [PMID: 21756952]
[12]
Jabr-Milance, L.S. Vlerian van, L.E.; Yadav, S.; Amiji, M.M. Multifunctional nanocarriers to overcome tumor drug resistance. Cancer Treat. Rev., 2008, 34, 592-602.
[http://dx.doi.org/10.1016/j.ctrv.2008.04.003] [PMID: 18538481]
[13]
Luo, J.; Solimini, N.L.; Elledge, S.J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell, 2009, 136(5), 823-837.
[http://dx.doi.org/10.1016/j.cell.2009.02.024] [PMID: 19269363]
[14]
Bhise, K.; Sau, S.; Alsaab, H.; Kashaw, S.K.; Tekade, R.K.; Iyer, A.K. Nanomedicine for cancer diagnosis and therapy: advancement, success and structure-activity relationship. Ther. Deliv., 2017, 8(11), 1003-1018.
[http://dx.doi.org/10.4155/tde-2017-0062] [PMID: 29061101]
[15]
Nayak, A.K.; Dhara, A.K. Nanotechnology in drug delivery applications. Arch. Appl. Sci. Res., 2010, 2, 284-293.
[16]
Malakar, J.; Ghosh, A.; Basu, A.; Nayak, A.K. Nanotechnology promising: a carrier for intracellular drug delivery system. Int. Res. J. Pharm., 2012, 3, 36-40.
[17]
Alexis, F.; Pridgen, E.; Langer, R.; Farokhzad, O. Nanoparticle technologies for cancer therapy. springer-verlag; schafer-korting, m., ed.; handbook of experimental pharmacology berlin, germany, 2010, pp 197, .
[18]
Wang, A.Z.; Langer, R.; Farokhzad, O.C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med., 2012, 63, 185-198.
[http://dx.doi.org/10.1146/annurev-med-040210-162544] [PMID: 21888516]
[19]
Maddinedi, S.B.; Mandal, B.K.; Ranjan, S.; Dasgupta, N. Diastase assisted green synthesis of size controllable gold nanoparticles. RSC Adv., 2015, 5, 26727-26733.
[http://dx.doi.org/10.1039/C5RA03117F]
[20]
Maddinedi, S.B.; Mandal, B.K.; Anna, K.K. Environment friendly approach for size controllable synthesis of biocompatible Silver nanoparticles using diastase. Environ. Toxicol. Pharmacol., 2017, 49, 131-136.
[http://dx.doi.org/10.1016/j.etap.2016.11.019] [PMID: 27992806]
[21]
Maddinedi, S.B.; Mandal, B.K.; Maddili, S.K. Biofabrication of size controllable silver nanoparticles - A green approach. J. Photochem. Photobiol. B, 2017, 167, 236-241.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.01.003] [PMID: 28088104]
[22]
Maddinedi, S.B.; Mandal, B.K.; Patil, S.H.; Andhalkar, V.V.; Ranjan, S.; Dasgupta, N. Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. J. Photochem. Photobiol. B, 2017, 166, 252-258.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.12.008] [PMID: 28011435]
[23]
Maddinedi, S.B.; Sonamuthu, J.; Suzuk, ; Yildiz, S.; Han, G.; Cai, Y.; Gao, J.; Ni, Q.; Yao, J. Silk sericin induced fabrication of reduced graphene oxide and its in-vitro cytotoxicity, photothermal evaluation. J. Photochem. Photobiol. B, 2018, 186, 189-196.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.07.020] [PMID: 30075424]
[24]
Maddinedi, S.B. Green synthesis of biocompatible Au−Cu2−xSe heterodimer nanoparticles and their in-vitro photothermal assay. Environ. Toxicol. Pharmacol., 2017, 53, 29-33.
[http://dx.doi.org/10.1016/j.etap.2017.05.006] [PMID: 28501781]
[25]
Maddinedi, S.B.; Mandal, B.K.; Anna, K.K. Tyrosine assisted size controlled synthesis of silver nanoparticles and their catalytic, in-vitro cytotoxicity evaluation. Environ. Toxicol. Pharmacol., 2017, 51, 23-29.
[http://dx.doi.org/10.1016/j.etap.2017.02.020] [PMID: 28262509]
[26]
Waghule, T.; Rapalli, V.K.; Singhvi, G.; Manchanda, P.; Hans, N.; Dubey, S.K.; Hasnain, M.S.; Nayak, A.K. Voriconazole loaded nanostructured lipid carriers based topical delivery system: QbD based designing, characterization, in-vitro and ex-vivo evaluation. J. Drug Deliv. Sci. Technol., 2019, 52, 303-315.
[http://dx.doi.org/10.1016/j.jddst.2019.04.026]
[27]
Harmozi, B. Application of nanoparticles in cancer treatment. advanced theranostic materials; tiwari, a.; patra, h.k.; choi, j-w., eds.; wiley-scrivener, usa, 2015, pp. 37-66.
[http://dx.doi.org/10.1002/9781118998922.ch2]
[28]
Muller, J.; Huaux, F.; Moreau, N.; Misson, P.; Heilier, J.F.; Delos, M.; Arras, M.; Fonseca, A.; Nagy, J.B.; Lison, D. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol., 2005, 207(3), 221-231.
[http://dx.doi.org/10.1016/j.taap.2005.01.008] [PMID: 16129115]
[29]
Dai, H. Carbon nanotubes: opportunities and challenges. Surf. Sci., 2002, 500, 218-241.
[http://dx.doi.org/10.1016/S0039-6028(01)01558-8]
[30]
Elhissi, A.M.A.; Ahmed, W.; Hassan, I.U.; Dhanak, V.R.; D’Emanuele, A. Carbon nanotubes in cancer therapy and drug delivery. J. Drug Deliv., 2012, 2012, 837327.
[http://dx.doi.org/10.1155/2012/837327] [PMID: 22028974]
[31]
Beg, S.; Rizwan, M.; Sheikh, A.M.; Hasnain, M.S.; Anwer, K.; Kohli, K. Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J. Pharm. Pharmacol., 2011, 63(2), 141-163.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01167.x] [PMID: 21235578]
[32]
Hasnain, M.S.; Ahmad, S.A.; Hoda, M.N.; Rishishwar, S.; Rishishwar, P.; Nayak, A.K. Stimuli-responsive carbon nanotubes for targeted drug delivery. stimuli responsive polymeric nanocarriers for drug delivery applications: volume 2: advanced nanocarriers for therapeutics, woodhead publishing series in biomaterials; elsevier ltd, 2018, pp 321, .
[33]
Joselevich, E. Electronic structure and chemical reactivity of carbon nanotubes: a chemist’s view. Chem. Phys. Chem., 2004, 5(5), 619-624.
[http://dx.doi.org/10.1002/cphc.200301049] [PMID: 15179713]
[34]
Liang, F.; Chen, B. A review on biomedical applications of single-walled carbon nanotubes. Curr. Med. Chem., 2010, 17(1), 10-24.
[http://dx.doi.org/10.2174/092986710789957742] [PMID: 19941481]
[35]
Flahaut, E.; Bacsa, R.; Peigney, A.; Laurent, C. Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chem. Commun. (Camb.), 2003, 12(12), 1442-1443.
[http://dx.doi.org/10.1039/b301514a] [PMID: 12841282]
[36]
Danailov, D.; Keblinski, P.; Nayak, S.; Ajayan, P.M. Bending properties of carbon nanotubes encapsulating solid nanowires. J. Nanosci. Nanotechnol., 2002, 2(5), 503-507.
[http://dx.doi.org/10.1166/jnn.2002.132] [PMID: 12908288]
[37]
Iijima, S.; Yudasaka, M.; Yamada, R.; Bandow, S.; Suenaga, K.; Kokai, F.; Takahashi, K. Nano-aggregates of single walled graphitic carbon nanohorns. Chem. Phys. Lett., 1999, 309, 165-170.
[http://dx.doi.org/10.1016/S0009-2614(99)00642-9]
[38]
Murakami, T.; Sawada, H.; Tamura, G.; Yudasaka, M.; Iijima, S.; Tsuchida, K. Water-dispersed single-wall carbon nanohorns as drug carriers for local cancer chemotherapy. Nanomedicine (Lond.), 2008, 3(4), 453-463.
[http://dx.doi.org/10.2217/17435889.3.4.453] [PMID: 18694307]
[39]
Shiba, K.; Yudasaka, M.; Iijima, S. [Carbon nanohorns as a novel drug carrier]. Nihon Rinsho 2006, 64(2), 239-246.
[PMID: 16454176]
[40]
Dai, H. Nanotube growth and characterization. carbon nanotubes., topics in applied physics, springer: berlin, germany, 2001, 80, pp. 29-53.
[http://dx.doi.org/10.1007/3-540-39947-x_3]
[41]
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354, 56-58.
[http://dx.doi.org/10.1038/354056a0]
[42]
Mohd, M.A.R.; Iqbal, J. Production of carbon nanotubes by different routes-a review. J. Encapsul. Adsorp. Sci., 2011, 1, 29-34.
[43]
Hou, P.X.; Liu, C.; Cheng, H.M. Purification of carbon nanotubes. Carbon, 2008, 46, 2003-2025.
[http://dx.doi.org/10.1016/j.carbon.2008.09.009]
[44]
Nasibulin, A.G.; Pikhitsa, P.V.; Jiang, H.; Brown, D.P.; Krasheninnikov, A.V.; Anisimov, A.S.; Queipo, P.; Moisala, A.; Gonzalez, D.; Lientschnig, G.; Hassanien, A.; Shandakov, S.D.; Lolli, G.; Resasco, D.E.; Choi, M.; Tománek, D.; Kauppinen, E.I. A novel hybrid carbon material. Nat. Nanotechnol., 2007, 2(3), 156-161.
[http://dx.doi.org/10.1038/nnano.2007.37] [PMID: 18654245]
[45]
Khan, J.H.; Husain, M. Carbon nanotube and its possible applications. Indian J. Eng. Mater. Sci., 2005, 12, 529-551.
[46]
Sinnott, S.B.; Andrews, R. Carbon nanotubes synthesis, properties and applications. Crit. Rev. Solid State Mater. Sci., 2001, 26, 145-249.
[http://dx.doi.org/10.1080/20014091104189]
[47]
Rastogi, V.; Yadav, P.; Bhattacharya, S.S.; Mishra, A.K.; Verma, N.; Verma, A.; Pandit, J.K. Carbon nanotubes: an emerging drug carrier for targeting cancer cells. J. Drug Deliv., 2014, 2014670815
[http://dx.doi.org/10.1155/2014/670815] [PMID: 24872894]
[48]
Sitharaman, B.; De Rosa, A.M.; Greco, K.; Rajamani, S. Recent patents on single walled carbon nanotubes for biomedical imaging, drug delivery and tissue regeneration. Recent Pat. Biomed. Eng., 2010, 3, 86-94.
[http://dx.doi.org/10.2174/1874764711003020086]
[49]
Kim, H.H.; Kim, H.J. Preparation of carbon nanotubes by DC arc discharge process under reduced pressure in an air atmosphere. Mater. Sci. Eng. B, 2006, 133, 241-244.
[http://dx.doi.org/10.1016/j.mseb.2006.06.017]
[50]
Szabo, A.; Perri, C.; Ceato, A.; Girodano, G.; Vuono, D.; Nagy, B. Synthesis methods of carbon nanotubes and related material. Mater, 2010, 3, 3092-3140.
[http://dx.doi.org/10.3390/ma3053092]
[51]
Yadasaka, M.; Ichihashi, T.; Komatsu, T.; Iijima, S. Single wall carbon nanotubes formed by a single laser beam pulse. Chem. Phys. Lett., 1999, 299, 91-96.
[http://dx.doi.org/10.1016/S0009-2614(98)01219-6]
[52]
Zhang, H.; Chem, K.; He, Y.; Zhu, Y.; Chen, Y.; Wu, C.; Wang, J.; Lios, J.H.; Liu, S.H. Formation and Raman spectroscopy of single wall carbon nanotubes synthesized by CO2 continuous laser vaporization. J. Phys. Chem. Solids, 2001, 62, 2007-2010.
[http://dx.doi.org/10.1016/S0022-3697(01)00043-9]
[53]
Khodadadi, A.A.; Mortazavi, Y. carbon nanotubes continuous synthesis process using iron floating catalysts and mgo particles for cvd of methane in a fluidized bed reactor. us patent 8293204, 2012.
[54]
Gomez-Gualdrón, D.A.; Burgos, J.C.; Yu, J.; Balbuena, P.B. Carbon nanotubes: engineering biomedical applications. Prog. Mol. Biol. Transl. Sci., 2011, 104, 175-245.
[http://dx.doi.org/10.1016/B978-0-12-416020-0.00005-X] [PMID: 22093220]
[55]
Wu, W.; Li, R.; Bian, X.; Zhu, Z.; Ding, D.; Li, X.; Jia, Z.; Jiang, X.; Hu, Y. Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano, 2009, 3(9), 2740-2750.
[http://dx.doi.org/10.1021/nn9005686] [PMID: 19702292]
[56]
Holzinger, M.; Vostrowsky, Q.; Hirsch, A. Sidewall functionalisation of carbon nanotubes. Angew. Chem. Int. Ed., 2001, 40, 4002-4005.
[http://dx.doi.org/10.1002/1521-3773(20011105)40:21<4002:AID-ANIE4002>3.0.CO;2-8]
[57]
Prato, M.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res., 2008, 41(1), 60-68.
[http://dx.doi.org/10.1021/ar700089b] [PMID: 17867649]
[58]
Behnam, B.; Shier, W.T.; Nia, A.H.; Abnous, K.; Ramezani, M. Non-covalent functionalization of single-walled carbon nanotubes with modified polyethyleneimines for efficient gene delivery. Int. J. Pharm., 2013, 454(1), 204-215.
[http://dx.doi.org/10.1016/j.ijpharm.2013.06.057] [PMID: 23856161]
[59]
Hu, C.Y.; Xu, Y.J.; Duo, S.W.; Zhang, R.E.; Li, M.S. Noncovalent functionalisation of carbon nanotubes with surfactants and polymers. J. Chin. Chem. Soc. (Taipei), 2009, 56, 234-239.
[http://dx.doi.org/10.1002/jccs.200900033]
[60]
Villaverde, A. nanoparticles in translational sciences and medicine, academic press: london, u.k., 2011, 104, p. 648.
[61]
Minko, T. Soluble polymer conjugates for drug delivery. Drug Discov. Today. Technol., 2005, 2(1), 15-20.
[http://dx.doi.org/10.1016/j.ddtec.2005.05.005] [PMID: 24981750]
[62]
Fabbro, C.; Ali-Boucetta, H.; Da Ros, T.; Kostarelos, K.; Bianco, A.; Prato, M. Targeting carbon nanotubes against cancer. Chem. Commun. (Camb.), 2012, 48(33), 3911-3926.
[http://dx.doi.org/10.1039/c2cc17995d] [PMID: 22428156]
[63]
Kams, N.W.S.; Dai, H. Single walled carbon nanotubes for transport and delivery of biological cargos. Phys. Status Solidi B. Basic Solid State Phys., 2006, 243, 3561-3566.
[http://dx.doi.org/10.1002/pssb.200669226]
[64]
Mu, Q.; Liu, W.; Xing, Y.; Zhou, H.; Li, Z.; Zhang, Y. Protein binding of functionalized MWCNTs is governed by the surface chemistry of both parties and the nanotube diameter. J. Phys. Chem. C, 2008, 112, 3300-3307.
[http://dx.doi.org/10.1021/jp710541j]
[65]
Pantarotto, D.; Briand, J.P.; Prato, M.; Bianco, A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. (Camb.), 2004, 10(1), 16-17.
[http://dx.doi.org/10.1039/b311254c] [PMID: 14737310]
[66]
Pantarotto, D.; Singh, R.; McCarthy, D.; Erhardt, M.; Briand, J.P.; Prato, M.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. Engl., 2004, 43(39), 5242-5246.
[http://dx.doi.org/10.1002/anie.200460437] [PMID: 15455428]
[67]
Dolatabadi, J.E.N.; Omidi, Y.; Losic, D. Carbon nanotubes as an advanced drug and gene delivery nanosystem. Curr. Nanosci., 2011, 7, 297-314.
[http://dx.doi.org/10.2174/157341311795542444]
[68]
Bianco, A.; Kostarelos, K.; Prato, M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol., 2005, 9(6), 674-679.
[http://dx.doi.org/10.1016/j.cbpa.2005.10.005] [PMID: 16233988]
[69]
Lee, Y.; Geckeler, K.E. Carbon nanotubes in the biological interphase: the relevance of noncovalence. Adv. Mater., 2010, 22(36), 4076-4083.
[http://dx.doi.org/10.1002/adma.201000746] [PMID: 20717986]
[70]
Chandrasekhar, P. CNT applications in drug and biomolecule delivery, conducting polymers. Fundamentals and Applications; Springer, 2018, pp. 61-64.
[71]
Wong, B.S.; Yoong, S.L.; Jagusiak, A.; Panczyk, T.; Ho, H.K.; Ang, W.H.; Pastorin, G. Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliv. Rev., 2013, 65(15), 1964-2015.
[http://dx.doi.org/10.1016/j.addr.2013.08.005] [PMID: 23954402]
[72]
Mu, S.; Liang, Y.; Chen, S.; Zhang, L.; Liu, T. MWNT-hybrided supramolecular hydrogel for hydrophobic camptothecin delivery. Mater. Sci. Eng. C, 2015, 50, 294-299.
[http://dx.doi.org/10.1016/j.msec.2015.02.016] [PMID: 25746273]
[73]
Tripisciano, C.; Rummeli, M.H.; Chen, X.C.; Borowiak-Palen, E. Multi-wall carbon nanotubes-a vehicle for targeted irinotecan drug delivery. Phys. States Solid. B., 2010, 247, 2673-2677.
[http://dx.doi.org/10.1002/pssb.201000143]
[74]
Nakashima, N. Solubilization of single-walled carbon nanotubes with condensed aromatic compounds. Sci. Technol. Adv. Mater., 2006, 7, 609-616.
[http://dx.doi.org/10.1016/j.stam.2006.08.004]
[75]
Liu, Z.; Sun, X.; Nakayama-Ratchford, N.; Dai, H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano, 2007, 1(1), 50-56.
[http://dx.doi.org/10.1021/nn700040t] [PMID: 19203129]
[76]
Liu, Z.; Fan, A.C.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X.Y. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Ed., 2009, 48, 7669-7682.
[http://dx.doi.org/10.1002/anie.200902612]
[77]
Zhang, X.; Meng, L.; Lu, Q.; Fei, Z.; Dyson, P.J. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials, 2009, 30(30), 6041-6047.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.025] [PMID: 19643474]
[78]
Pistone, A.; Iannazzo, D.; Ansari, S.; Milone, C.; Salamò, M.; Galvagno, S.; Cirmi, S.; Navarra, M. Tunable doxorubicin release from polymer-gated multiwalled carbon nanotubes. Int. J. Pharm., 2016, 515(1-2), 30-36.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.010] [PMID: 27720871]
[79]
Cao, X.; Tao, L.; Wen, S.; Hou, W.; Shi, X. Hyaluronic acid-modified multiwalled carbon nanotubes for targeted delivery of doxorubicin into cancer cells. Carbohydr. Res., 2015, 405, 70-77.
[http://dx.doi.org/10.1016/j.carres.2014.06.030] [PMID: 25500334]
[80]
Heister, E.; Neves, V.; Tilmaciu, C.; Lipart, K.; Bettran, V.S.; Coley, H.M. Tripple functionalization of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody and a fluorescent marker for targeted cancer therapy. Carbon, 2009, 47, 2152-2160.
[http://dx.doi.org/10.1016/j.carbon.2009.03.057]
[81]
Das, M.; Singh, R.P.; Datir, S.R.; Jain, S. Surface chemistry dependent “switch” regulates the trafficking and therapeutic performance of drug-loaded carbon nanotubes. Bioconjug. Chem., 2013, 24(4), 626-639.
[http://dx.doi.org/10.1021/bc300598z] [PMID: 23517108]
[82]
Samorì, C.; Ali-Boucetta, H.; Sainz, R.; Guo, C.; Toma, F.M.; Fabbro, C.; da Ros, T.; Prato, M.; Kostarelos, K.; Bianco, A. Enhanced anticancer activity of multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers. Chem. Commun. (Camb.), 2010, 46(9), 1494-1496.
[http://dx.doi.org/10.1039/B923560D] [PMID: 20162159]
[83]
Parker, W.B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev., 2009, 109(7), 2880-2893.
[http://dx.doi.org/10.1021/cr900028p] [PMID: 19476376]
[84]
Noble, S.; Goa, K.L. Gemcitabine. A review of its pharmacology and clinical potential in non-small cell lung cancer and pancreatic cancer. Drugs, 1997, 54(3), 447-472.
[http://dx.doi.org/10.2165/00003495-199754030-00009] [PMID: 9279506]
[85]
Razzazan, A.; Atyabi, F.; Kazemi, B.; Dinarvand, R. In vivo drug delivery of gemcitabine with PEGylated single-walled carbon nanotubes. Mater. Sci. Eng. C, 2016, 62, 614-625.
[http://dx.doi.org/10.1016/j.msec.2016.01.076] [PMID: 26952465]
[86]
Singh, R.; Mehra, N.K.; Jain, V.; Jain, N.K. Gemcitabine-loaded smart carbon nanotubes for effective targeting to cancer cells. J. Drug Target., 2013, 21(6), 581-592.
[http://dx.doi.org/10.3109/1061186X.2013.778264] [PMID: 23484494]
[87]
Wheate, N.J.; Walker, S.; Craig, G.E.; Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans., 2010, 39(35), 8113-8127.
[http://dx.doi.org/10.1039/c0dt00292e] [PMID: 20593091]
[88]
Lilley, D.M.J. Cisplatin adducts in DNA distortion and recognition. J. Biol. Inorg. Chem., 1996, 1, 189-191.
[http://dx.doi.org/10.1007/s007750050042]
[89]
Wang, D.; Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov., 2005, 4(4), 307-320.
[http://dx.doi.org/10.1038/nrd1691] [PMID: 15789122]
[90]
Decatris, M.P.; Sundar, S.; O’Byrne, K.J. Platinum-based chemotherapy in metastatic breast cancer: current status. Cancer Treat. Rev., 2004, 30(1), 53-81.
[http://dx.doi.org/10.1016/S0305-7372(03)00139-7] [PMID: 14766126]
[91]
Feazell, R.P.; Nakayama-Ratchford, N.; Dai, H.; Lippard, S.J. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Am. Chem. Soc., 2007, 129(27), 8438-8439.
[http://dx.doi.org/10.1021/ja073231f] [PMID: 17569542]
[92]
Dhar, S.; Liu, Z.; Thomale, J.; Dai, H.; Lippard, S.J. Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J. Am. Chem. Soc., 2008, 130(34), 11467-11476.
[http://dx.doi.org/10.1021/ja803036e] [PMID: 18661990]
[93]
Dogterom, M.; Surrey, T. Microtubule organization in vitro. Curr. Opin. Cell Biol., 2013, 25(1), 23-29.
[http://dx.doi.org/10.1016/j.ceb.2012.12.002] [PMID: 23287583]
[94]
Florian, S.; Mitchison, T.J. Anti-microtubule drugs. Methods Mol. Biol., 2016, 1413, 403-421.
[http://dx.doi.org/10.1007/978-1-4939-3542-0_25] [PMID: 27193863]
[95]
Foley, E.A.; Kapoor, T.M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol., 2013, 14(1), 25-37.
[http://dx.doi.org/10.1038/nrm3494] [PMID: 23258294]
[96]
Stanton, R.A.; Gernert, K.M.; Nettles, J.H.; Aneja, R. Drugs that target dynamic microtubules: a new molecular perspective. Med. Res. Rev., 2011, 31(3), 443-481.
[http://dx.doi.org/10.1002/med.20242] [PMID: 21381049]
[97]
Lay, C.L.; Liu, H.Q.; Tan, H.R.; Liu, Y. Delivery of paclitaxel by physically loading onto PEG-grafted carbon nanotubes for potent cancer therapeutics. Nanotechnology, 2010, 21, 65101.
[http://dx.doi.org/10.1088/0957-4484/21/6/065101] [PMID: 20057024]
[98]
Kostarelos, K. The long and short of carbon nanotube toxicity. Nat. Biotechnol., 2008, 26(7), 774-776.
[http://dx.doi.org/10.1038/nbt0708-774] [PMID: 18612299]
[99]
Arya, N.; Arora, A.; Vasu, K.S.; Sood, A.K.; Katti, D.S. Combination of single walled carbon nanotubes/graphene oxide with paclitaxel: a reactive oxygen species mediated synergism for treatment of lung cancer. Nanoscale, 2013, 5(7), 2818-2829.
[http://dx.doi.org/10.1039/c3nr33190c] [PMID: 23443459]
[100]
Zhang, W.; Zhang, D.; Tan, J.; Cong, H. Carbon nanotube exposure sensitize human ovarian cancer cells to paclitaxel. J. Nanosci. Nanotechnol., 2012, 12(9), 7211-7214.
[http://dx.doi.org/10.1166/jnn.2012.6506] [PMID: 23035454]
[101]
Yu, B.; Tan, L.; Zheng, R.; Tan, H.; Zheng, L. Targeted delivery and controlled release of paclitaxel for the treatment of lung cancer using single-walled carbon nanotubes. Mater. Sci. Eng. C, 2016, 68, 579-584.
[http://dx.doi.org/10.1016/j.msec.2016.06.025] [PMID: 27524057]
[102]
Berlin, J.M.; Leonard, A.D.; Pham, T.T.; Sano, D.; Marcano, D.C.; Yan, S.; Fiorentino, S.; Milas, Z.L.; Kosynkin, D.V.; Price, B.K.; Lucente-Schultz, R.M.; Wen, X.; Raso, M.G.; Craig, S.L.; Tran, H.T.; Myers, J.N.; Tour, J.M. Effective drug delivery, in vitro and in vivo, by carbon-based nano vectors non covalently loaded with unmodified Paclitaxel. ACS Nano, 2010, 4(8), 4621-4636.
[http://dx.doi.org/10.1021/nn100975c] [PMID: 20681596]
[103]
Barlin, J.M.; Pharm, T.T.; Sano, D.; Mohamedali, K.A.; Markano, D.C.; Meyer, J.N. Noncovalent functionalization of carbon nano vectors with an antibody enables targeted drug delivery. ACS Nano, 2010, 118, 2115-2128.
[104]
Singh, R.P.; Sharma, G. Sonali; Singh, S.; Bharti, S.; Pandey, B.L.; Koch, B.; Muthu, M.S. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery. Mater. Sci. Eng. C, 2017, 77, 446-458.
[http://dx.doi.org/10.1016/j.msec.2017.03.225] [PMID: 28532051]
[105]
Ji, J.; Liu, M.; Meng, Y.; Liu, R.; Yan, Y.; Dong, J.; Guo, Z.; Ye, C. Experimental study of magnetic multi-walled carbon nanotube-doxorubicin conjugate in a lymph node metastatic model of breast cancer. Med. Sci. Monit., 2016, 22, 2363-2373.
[http://dx.doi.org/10.12659/MSM.898597] [PMID: 27385226]
[106]
Arora, S.; Kumar, R.; Kaur, H.; Rayat, C.S.; Kaur, I.; Arora, S.K.; Srivastava, J.; Bharadwaj, L.M. Translocation and toxicity of docetaxel multi-walled carbon nanotube conjugates in mammalian breast cancer cells. J. Biomed. Nanotechnol., 2014, 10(12), 3601-3609.
[http://dx.doi.org/10.1166/jbn.2014.1875] [PMID: 26000373]
[107]
Chopdey, P.K.; Tekade, R.K.; Mehra, N.K.; Mody, N.; Jain, N.K. Glycyrrhizin conjugated dendrimer and multi-walled carbon nanotubes for liver specific delivery of doxorubicin. J. Nanosci. Nanotechnol., 2015, 15(2), 1088-1100.
[http://dx.doi.org/10.1166/jnn.2015.9039] [PMID: 26353617]
[108]
Oh, Y.; Jin, J.O.; Oh, J. Photothermal-triggered control of sub-cellular drug accumulation using doxorubicin-loaded single-walled carbon nanotubes for the effective killing of human breast cancer cells. Nanotechnology, 2017, 28(12), 125101.
[http://dx.doi.org/10.1088/1361-6528/aa5d7d] [PMID: 28145889]
[109]
Qu, G.; Bai, Y.; Zhang, Y.; Jia, Q.; Zhang, W.; Yan, B. The effect of multiwalled carbon nanotube agglomeration on their accumulation in and damage to organs in mice. Carbon, 2009, 47, 2060-2069.
[http://dx.doi.org/10.1016/j.carbon.2009.03.056]
[110]
Chen, G.; He, Y.; Wu, X.; Zhang, Y.; Luo, C.; Jing, P. In vitro and in vivo studies of pirarubicin-loaded SWNT for the treatment of bladder cancer. Braz. J. Med. Biol. Res., 2012, 45(8), 771-776.
[http://dx.doi.org/10.1590/S0100-879X2012007500111] [PMID: 22782557]
[111]
Lu, Y-J.; Wei, K-C.; Ma, C.C.; Yang, S.Y.; Chen, J.P. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf. B Biointerfaces, 2012, 89, 1-9.
[http://dx.doi.org/10.1016/j.colsurfb.2011.08.001] [PMID: 21982868]
[112]
Ren, J.; Sen, S.; Wang, D. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multiwalled carbon nanotubes modified with angiopep-2. Biomater, 2012, 33, 3329-3333.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.025]
[113]
Risi, G.; Bloise, N.; Merli, D.; Icaro-Cornaglia, A.; Profumo, A.; Fagnoni, M.; Eliana, Q.; Imbriani, M.; Visai, L. In vitro study of Multiwall Carbon Nanotubes (MWCNTs) with adsorbed Mitoxantrone (MTO) as a drug delivery system to treat breast cancer. RSC Adv., 2014, 4, 18683-18693.
[http://dx.doi.org/10.1039/C4RA02366H]
[114]
Yang, F.; Jin, C.; Yang, D.; Jiang, Y.; Li, J.; Di, Y.; Hu, J.; Wang, C.; Ni, Q.; Fu, D. Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment. Eur. J. Cancer, 2011, 47(12), 1873-1882.
[http://dx.doi.org/10.1016/j.ejca.2011.03.018] [PMID: 21493061]
[115]
Meng, L.; Ji, Z.; Lin, G. Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery systems. J. Colloids. Interaf. Sci., 2012, 365, 143-149.
[http://dx.doi.org/10.1016/j.jcis.2011.09.013]
[116]
Li, R.; Wu, R.; Zhao, L. Folate and iron defunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarriers to cancer cells. Carbon, 2011, 49, 1797-1805.
[http://dx.doi.org/10.1016/j.carbon.2011.01.003]
[117]
Pan, B.; Cui, D.; Xu, P. Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their applications in gene delivery system. Nanotechnology, 2009, 20, 1-9.
[http://dx.doi.org/10.1088/0957-4484/20/12/125101]
[118]
Taghdisi, S.M.; Lavaee, P.; Ramezani, M.; Abnous, K. Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Eur. J. Pharm. Biopharm., 2011, 77(2), 200-206.
[http://dx.doi.org/10.1016/j.ejpb.2010.12.005] [PMID: 21168488]
[119]
Al Faraj, A.; Shaik, A.S.; Ratemi, E.; Halwani, R. Combination of drug-conjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. J. Control. Release, 2016, 225, 240-251.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.053] [PMID: 26827662]
[120]
Saeed, L.M.; Mahmood, M.; Pyrek, S.J.; Fahmi, T.; Xu, Y.; Mustafa, T.; Nima, Z.A.; Bratton, S.M.; Casciano, D.; Dervishi, E.; Radominska-Pandya, A.; Biris, A.S. Single-walled carbon nanotube and graphene nanodelivery of gambogic acid increases its cytotoxicity in breast and pancreatic cancer cells. J. Appl. Toxicol., 2014, 34(11), 1188-1199.
[http://dx.doi.org/10.1002/jat.3018] [PMID: 25220893]
[121]
Wang, L.; Shi, J.; Zhang, H.; Li, H.; Gao, Y.; Wang, Z.; Wang, H.; Li, L.; Zhang, C.; Chen, C.; Zhang, Z.; Zhang, Y. Synergistic anticancer effect of RNAi and photothermal therapy mediated by functionalized single-walled carbon nanotubes. Biomaterials, 2013, 34(1), 262-274.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.037] [PMID: 23046752]
[122]
Mohammadi, M.; Salmasi, Z.; Hashemi, M.; Mosaffa, F.; Abnous, K.; Ramezani, M. Single-walled carbon nanotubes functionalized with aptamer and piperazine-polyethylenimine derivative for targeted siRNA delivery into breast cancer cells. Int. J. Pharm., 2015, 485(1-2), 50-60.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.031] [PMID: 25712164]
[123]
Guo, C.; Al-Jamal, W.T.; Toma, F.M.; Bianco, A.; Prato, M.; Al-Jamal, K.T.; Kostarelos, K. Design of cationic multi-walled carbon nanotubes as efficient siRNA vectors for lung cancer xenograft eradication. Bioconjug. Chem., 2015, 26(7), 1370-1379.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00249] [PMID: 26036843]
[124]
Anderson, T.; Hu, R.; Yang, C.; Yonn, H.S.; Yong, K.T. Pancreatic cancer gene therapy using an siRNA-functionalized Single Walled Carbon Nanotubes (SWNTs) nanoplex. Biomater. Sci., 2014, 2, 1244-1253.
[http://dx.doi.org/10.1039/C4BM00019F]
[125]
Lee, P.C.; Chiou, Y.C.; Wong, J.M.; Peng, C.L.; Shieh, M.J. Targeting colorectal cancer cells with single-walled carbon nanotubes conjugated to anticancer agent SN-38 and EGFR antibody. Biomaterials, 2013, 34(34), 8756-8765.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.067] [PMID: 23937913]
[126]
Karmakar, A.; Bratton, S.M.; Dervishi, E.; Ghosh, A.; Mahmood, M.; Xu, Y.; Saeed, L.M.; Mustafa, T.; Casciano, D.; Radominska-Pandya, A.; Biris, A.S. Ethylenediamine functionalized-Single-Walled Nanotube (f-SWNT)-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells. Int. J. Nanomedicine, 2011, 6, 1045-1055.
[PMID: 21720516]
[127]
Prajapati, S.K.; Jain, A.; Shrivastava, C.; Jain, A.K. Hyaluronic acid conjugated multi-walled carbon nanotubes for colon cancer targeting. Int. J. Biol. Macromol., 2019, 123, 691-703.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.116] [PMID: 30445095]
[128]
Liu, D.; Zhang, Q.; Wang, J.; Fan, L.; Zhu, W.; Cai, D. Hyaluronic acid-coated single-walled carbon nanotubes loaded with doxorubicin for the treatment of breast cancer. Pharmazie, 2019, 74(2), 83-90.
[PMID: 30782256]
[129]
Falank, C.; Tasset, A.W.; Farrell, M.; Harris, S.; Everill, P.; Marinkovic, M.; Reagan, M.R. Development of medical-grade, discrete, multi-walled carbon nanotubes as drug delivery molecules to enhance the treatment of hematological malignancies. Nanomedicine (Lond.), 2019, 2010, 2025.
[http://dx.doi.org/10.1016/j.nano.2019.102025] [PMID: 31170511]
[130]
Taghavi, S.; Nia, A.H.; Abnous, K.; Ramezani, M. Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells. Int. J. Pharm., 2017, 516(1-2), 301-312.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.027] [PMID: 27840158]
[131]
Singh, N.; Sachdev, A.; Gopinath, P. Polysaccharide functionalized single walled carbon nanotubes as nanocarriers for delivery of curcumin in lung cancer cells. J. Nanosci. Nanotechnol., 2018, 18(3), 1534-1541.
[http://dx.doi.org/10.1166/jnn.2018.14222] [PMID: 29448627]
[132]
Al Faraj, A.; Shaik, A.S.; Halwani, R.; Alfuraih, A. Magnetic targeting and delivery of drug-loaded SWCNTs theranostic nanoprobes to lung metastasis in breast cancer animal model: noninvasive monitoring using magnetic resonance imaging. Mol. Imaging Biol., 2016, 18(3), 315-324.
[http://dx.doi.org/10.1007/s11307-015-0902-0] [PMID: 26486793]
[133]
Badea, M.A.; Prodana, M.; Dinischiotu, A.; Crihana, C.; Ionita, D.; Balas, M. Cisplatin loaded multiwalled carbon nanotubes induce resistance in triple negative breast cancer cells. Pharmaceutics, 2018, 10(4), E228.
[http://dx.doi.org/10.3390/pharmaceutics10040228] [PMID: 30428555]
[134]
Saeednia, L.; Yao, L.; Cluff, K.; Asmatulu, R. Sustained releasing of methotrexate from injectable and thermosensitive chitosan-carbon nanotube hybrid hydrogels effectively controls tumor cell growth. ACS Omega, 2019, 4(2), 4040-4048.
[http://dx.doi.org/10.1021/acsomega.8b03212] [PMID: 30842986]
[135]
Yu, S.; Zhang, Y.; Chen, L.; Li, Q.; Du, J.; Gao, Y.; Zhang, L.; Yang, Y. Antitumor effects of carbon nanotube-drug complex against human breast cancer cells. Exp. Ther. Med., 2018, 16(2), 1103-1110.
[http://dx.doi.org/10.3892/etm.2016.3444] [PMID: 30116361]
[136]
González-Lavado, E.; Valdivia, L.; García-Castaño, A.; González, F.; Pesquera, C.; Valiente, R.; Fanarraga, M.L. Multi-walled carbon nanotubes complement the anti-tumoral effect of 5-Fluorouracil. Oncotarget, 2019, 10(21), 2022-2029.
[PMID: 31007845]
[137]
Lacerda, L.; Bianco, A.; Prato, M.; Kostarelos, K. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Deliv. Rev., 2006, 58(14), 1460-1470.
[http://dx.doi.org/10.1016/j.addr.2006.09.015] [PMID: 17113677]
[138]
Liu, Y.; Zhao, Y.; Sun, B.; Chen, C. Understanding the toxicity of carbon nanotubes. Acc. Chem. Res., 2013, 46(3), 702-713.
[http://dx.doi.org/10.1021/ar300028m] [PMID: 22999420]
[139]
Rodriguez-Yañez, Y.; Muñoz, B.; Albores, A. Mechanisms of toxicity by carbon nanotubes. Toxicol. Mech. Methods, 2013, 23(3), 178-195.
[http://dx.doi.org/10.3109/15376516.2012.754534] [PMID: 23193995]
[140]
Poland, C.A.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W.A.H.; Seaton, A.; Stone, V.; Brown, S.; Macnee, W.; Donaldson, K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol., 2008, 3(7), 423-428.
[http://dx.doi.org/10.1038/nnano.2008.111] [PMID: 18654567]
[141]
Kaiser, J.P.; Roesslein, M.; Buerki-Thurnherr, T.; Wick, P. Carbon nanotubes - curse or blessing. Curr. Med. Chem., 2011, 18(14), 2115-2128.
[http://dx.doi.org/10.2174/092986711795656171] [PMID: 21517765]
[142]
Cherukuri, P.; Bachilo, S.M.; Litovsky, S.H.; Weisman, R.B. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc., 2004, 126(48), 15638-15639.
[http://dx.doi.org/10.1021/ja0466311] [PMID: 15571374]
[143]
Firme, C.P., III; Bandaru, P.R. Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine (Lond.), 2010, 6(2), 245-256.
[http://dx.doi.org/10.1016/j.nano.2009.07.003] [PMID: 19699321]
[144]
Lewinski, N. Nanotechnology policy and environmental regulatory issues. J. Eng. Public Pol., 2005, 9, 1-37.
[145]
nanotechnology in clinical trials, on 30-01-2017 nci alliance for nanotechnology in cancer, national cancer research institute. 2017. [on line]
[146]
the global carbon nanotubes (cnt) market (2018-2023) is projected to grow at a cagr of 16.7% - technological advancements and decreasing production cost is driving growth. cision pr newswire, 2019. [online]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy