Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Ag+ Complexes as Potential Therapeutic Agents in Medicine and Pharmacy

Author(s): Aleksandra Hecel, Paulina Kolkowska, Karolina Krzywoszynska, Agnieszka Szebesczyk, Magdalena Rowinska-Zyrek and Henryk Kozlowski*

Volume 26, Issue 4, 2019

Page: [624 - 647] Pages: 24

DOI: 10.2174/0929867324666170920125943

Price: $65

Abstract

Silver is a non-essential element with promising antimicrobial and anticancer properties. This work is a detailed summary of the newest findings on the bioinorganic chemistry of silver, with a special focus on the applications of Ag+ complexes and nanoparticles. The coordination chemistry of silver is given a reasonable amount of attention, summarizing the most common silver binding sites and giving examples of such binding motifs in biologically important proteins. Possible applications of this metal and its complexes in medicine, particularly as antibacterial and antifungal agents and in cancer therapy, are discussed in detail. The most recent data on silver nanoparticles are also summarized.

Keywords: Silver(I) complexes, cysteine and methionine motifs, antibacterial and anticancer activity of Ag+, silver nanoparticles.

[1]
Turel, I. Special issue: practical applications of metal complexes. Molecules, 2015, 20(5), 7951-7956.
[2]
Feldman, D.R.; Bosl, G.J.; Sheinfeld, J.; Motzer, R.J. Medical treatment of advanced testicular cancer. JAMA, 2008, 299(6), 672-684.
[3]
Liu, Z.; Sadler, P.J. Organoiridium complexes: anticancer agents and catalysts. Acc. Chem. Res., 2014, 47(4), 1174-1185.
[4]
Leung, C.H.; Lin, S.; Zhong, H.J.; Ma, D.L. Metal complexes as potential modulators of inflammatory and autoimmune responses. Chem. Sci. (Camb.), 2015, 6(2), 871-884.
[5]
Kupcewicz, B.; Sobiesiak, K.; Malinowska, K.; Koprowska, K.; Czyz, M.; Keppler, B.; Budzisz, E. Copper(II) complexes with derivatives of pyrazole as potential antioxidant enzyme mimics. Med. Chem. Res., 2013, 22(5), 2395-2402.
[6]
Gasser, G.; Metzler-Nolte, N. The potential of organometallic complexes in medicinal chemistry. Curr. Opin. Chem. Biol., 2012, 16(1-2), 84-91.
[7]
Desoize, B. Metals and metal compounds in cancer treatment. Anticancer Res., 2004, 24(3a), 1529-1544.
[8]
Graham, G.G.; Kettle, A.J. The activation of gold complexes by cyanide produced by polymorphonuclear leukocytes. III. The formation of aurocyanide by myeloperoxidase. Biochem. Pharmacol., 1998, 56(3), 307-312.
[9]
Ahmed, K.B.A.; Raman, T.; Veerappan, A. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor. Mater. Sci. Eng. C, 2016, 68, 939-947.
[10]
Drake, P.L.; Hazelwood, K.J. Exposure-related health effects of silver and silver compounds: a review. Ann. Occup. Hyg., 2005, 49(7), 575-585.
[11]
Pruitt, B.A., Jr; McManus, A.T.; Kim, S.H.; Goodwin, C.W. Burn wound infections: current status. World J. Surg., 1998, 22(2), 135-145.
[12]
Fox, C.L. Silver sulfadiazine - a new drug for topical therapy of pseudomonas infections in burn wounds. Bull. N. Y. Acad. Med., 1968, 44(9), 1113.
[13]
Modak, S.; Stanford, J.; Friedlaender, J.; Fox, P.; Fox, C.L., Jr Control of burn wound infections by pefloxacin and its silver derivative. Burns, 1984, 10(3), 170-178.
[14]
Banti, C.N.; Hadjikakou, S.K. Anti-proliferative and anti-tumor activity of silver(I) compounds. Metallomics, 2013, 5(6), 569-596.
[15]
Atiyeh, B.S.; Costagliola, M.; Hayek, S.N.; Dibo, S.A. Effect of silver on burn wound infection control and healing: review of the literature. Burns, 2007, 33(2), 139-148.
[16]
Wasiak, J.; Cleland, H.; Campbell, F.; Spinks, A. Dressings for superficial and partial thickness burns. Cochrane Database Syst. Rev., 2013, (3), CD002106.
[17]
Poon, V.K.M.; Burd, A. In vitro cytotoxity of silver: implication for clinical wound care. Burns, 2004, 30(2), 140-147.
[18]
Jung, W.K.; Koo, H.C.; Kim, K.W.; Shin, S.; Kim, S.H.; Park, Y.H. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol., 2008, 74(7), 2171-2178.
[19]
Kanlayavattanakul, M.; Lourith, N. Body malodours and their topical treatment agents. Int. J. Cosmet. Sci., 2011, 33(4), 298-311.
[20]
Gauger, A.; Fischer, S.; Mempel, M.; Schaefer, T.; Foelster-Holst, R.; Abeck, D.; Ring, J. Efficacy and functionality of silver-coated textiles in patients with atopic eczema. J. Eur. Acad. Dermatol. Venereol., 2006, 20(5), 534-541.
[21]
Uchihara, T. Silver diagnosis in neuropathology: principles, practice and revised interpretation. Acta Neuropathol., 2007, 113(5), 483-499.
[22]
Skirtach, A.G.; Muñoz Javier, A.; Kreft, O.; Köhler, K.; Piera Alberola, A.; Möhwald, H.; Parak, W.J.; Sukhorukov, G.B. Laser-induced release of encapsulated materials inside living cells. Angew. Chem. Int. Ed. Engl., 2006, 45(28), 4612-4617.
[23]
Chen, X.; Schluesener, H.J. Nanosilver: a nanoproduct in medical application. Toxicol. Lett., 2008, 176(1), 1-12.
[24]
Wan, A.T.; Conyers, R.A.J.; Coombs, C.J.; Masterton, J.P. Determination of silver in blood, urine, and tissues of volunteers and burn patients. Clin. Chem., 1991, 37(10 Pt 1), 1683-1687.
[25]
Lansdown, A.B.G. Critical observations on the neurotoxicity of silver. Crit. Rev. Toxicol., 2007, 37(3), 237-250.
[26]
Meijboom, R.; Bowen, R.J.; Berners-Price, S.J. Coordination complexes of silver(I) with tertiary phosphine and related ligands. Coord. Chem. Rev., 2009, 253(3-4), 325-342.
[27]
Khlobystov, A.N.; Blake, A.J.; Champness, N.R.; Lemenovskii, D.A.; Majouga, A.G.; Zyk, N.V.; Schroder, M. Supramolecular design of one-dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen-donor ligands. Coord. Chem. Rev., 2001, 222, 155-192.
[28]
Hutchinson, D.J.; Cameron, S.A.; Hanton, L.R.; Moratti, S.C. Sensitivity of silver(I) complexes of a pyrimidine-hydrazone ligand to solvent, counteranion, and metal-to-ligand ratio changes. Inorg. Chem., 2012, 51(9), 5070-5081.
[29]
Valensin, D.; Padula, E.M.; Hecel, A.; Luczkowski, M.; Kozlowski, H. Specific binding modes of Cu(I) and Ag(I) with neurotoxic domain of the human prion protein. J. Inorg. Biochem., 2016, 155, 26-35.
[30]
Luczkowski, M.; De Ricco, R.; Stachura, M.; Potocki, S.; Hemmingsen, L.; Valensin, D. Metal ion mediated transition from random coil to β-sheet and aggregation of Bri2-23, a natural inhibitor of Aβ aggregation. Metallomics, 2015, 7(3), 478-490.
[31]
Kihlken, M.A.; Singleton, C.; Le Brun, N.E. Distinct characteristics of Ag+ and Cd2+ binding to CopZ from Bacillus subtilis. J. Biol. Inorg. Chem., 2008, 13(6), 1011-1023.
[32]
Wimmer, R.; Herrmann, T.; Solioz, M.; Wüthrich, K. NMR structure and metal interactions of the CopZ copper chaperone. J. Biol. Chem., 1999, 274(32), 22597-22603.
[33]
Chakravorty, D.K.; Wang, B.; Ucisik, M.N.; Merz, K.M., Jr Insight into the cation-π interaction at the metal binding site of the copper metallochaperone CusF. J. Am. Chem. Soc., 2011, 133(48), 19330-19333.
[34]
Stillman, M.J. Spectroscopic studies of copper and silver binding to metallothioneins. Met. Based Drugs, 1999, 6(4-5), 277-290.
[35]
Singh, S.K.; Roberts, S.A.; McDevitt, S.F.; Weichsel, A.; Wildner, G.F.; Grass, G.B.; Rensing, C.; Montfort, W.R. Crystal structures of multicopper oxidase CueO bound to copper(I) and silver(I): functional role of a methionine-rich sequence. J. Biol. Chem., 2011, 286(43), 37849-37857.
[36]
Ibricevic, A.; Brody, S.L.; Youngs, W.J.; Cannon, C.L. ATP7B detoxifies silver in ciliated airway epithelial cells. Toxicol. Appl. Pharmacol., 2010, 243(3), 315-322.
[37]
Camponeschi, F.; Valensin, D.; Tessari, I.; Bubacco, L.; Dell’Acqua, S.; Casella, L.; Monzani, E.; Gaggelli, E.; Valensin, G. Copper(I)-α-synuclein interaction: structural description of two independent and competing metal binding sites. Inorg. Chem., 2013, 52(3), 1358-1367.
[38]
Kozlowski, H.; Potocki, S.; Remelli, M.; Rowinska-Zyrek, M.; Valensin, D. Specific metal ion binding sites in unstructured regions of proteins. Coord. Chem. Rev., 2013, 257(19-20), 2625-2638.
[39]
Jiang, J.; Nadas, I.A.; Kim, M.A.; Franz, K.J. A Mets motif peptide found in copper transport proteins selectively binds Cu(I) with methionine-only coordination. Inorg. Chem., 2005, 44(26), 9787-9794.
[40]
Rubino, J.T.; Riggs-Gelasco, P.; Franz, K.J. Methionine motifs of copper transport proteins provide general and flexible thioether-only binding sites for Cu(I) and Ag(I). J. Biol. Inorg. Chem., 2010, 15(7), 1033-1049.
[41]
Haas, K.L.; Putterman, A.B.; White, D.R.; Thiele, D.J.; Franz, K.J. Model peptides provide new insights into the role of histidine residues as potential ligands in human cellular copper acquisition via Ctr1. J. Am. Chem. Soc., 2011, 133(12), 4427-4437.
[42]
D’Ambrosi, N.; Rossi, L. Copper at synapse: Release, binding and modulation of neurotransmission. Neurochem. Int., 2015, 90, 36-45.
[43]
Dusek, P.; Roos, P.M.; Litwin, T.; Schneider, S.A.; Flaten, T.P.; Aaseth, J. The neurotoxicity of iron, copper and manganese in Parkinson’s and Wilson’s diseases. J. Trace Elem. Med. Biol., 2015, 31, 193-203.
[44]
De Feo, C.J.; Aller, S.G.; Unger, V.M. A structural perspective on copper uptake in eukaryotes. Biometals, 2007, 20(3-4), 705-716.
[45]
De Feo, C.J.; Aller, S.G.; Siluvai, G.S.; Blackburn, N.J.; Unger, V.M. Three-dimensional structure of the human copper transporter hCTR1. Proc. Natl. Acad. Sci. USA, 2009, 106(11), 4237-4242.
[46]
Maryon, E.B.; Molloy, S.A.; Ivy, K.; Yu, H.; Kaplan, J.H. Rate and regulation of copper transport by human copper transporter 1 (hCTR1). J. Biol. Chem., 2013, 288(25), 18035-18046.
[47]
Hanson, S.R.; Donley, S.A.; Linder, M.C. Transport of silver in virgin and lactating rats and relation to copper. J. Trace Elem. Med. Biol., 2001, 15(4), 243-253.
[48]
Solioz, M.; Odermatt, A. Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J. Biol. Chem., 1995, 270(16), 9217-9221.
[49]
Eisses, J.F.; Kaplan, J.H. The mechanism of copper uptake mediated by human CTR1: a mutational analysis. J. Biol. Chem., 2005, 280(44), 37159-37168.
[50]
Maryon, E.B.; Molloy, S.A.; Zimnicka, A.M.; Kaplan, J.H. Copper entry into human cells: progress and unanswered questions. Biometals, 2007, 20(3-4), 355-364.
[51]
Schushan, M.; Barkan, Y.; Haliloglu, T.; Ben-Tal, N.C. (alpha)-trace model of the transmembrane domain of human copper transporter 1, motion and functional implications. Proc. Natl. Acad. Sci. USA, 2010, 107(24), 10908-10913.
[52]
Ohrvik, H.; Thiele, D.J.; New York Acad, S. How copper traverses cellular membranes through the mammalian copper transporter 1, Ctr1. Ann. N. Y. Acad. Sci., 2014, 1314, 32-41.
[53]
Wang, Y.R.; Wang, L.L.; Li, F. Micelle-bound structure of an extracellular Met-rich domain of hCtr1 and its binding with silver. RSC Advances, 2013, 3(35), 15245-15253.
[54]
Dong, Z.; Wang, Y.; Wang, C.; Xu, H.; Guan, L.; Li, Z.; Li, F. Self-Assembly of the Second Transmembrane Domain of hCtr1 in Micelles and Interaction with Silver Ion. J. Phys. Chem. B, 2015, 119(26), 8302-8312.
[55]
Dong, Z.; Guan, L.P.; Wang, C.Y.; Xu, H.R.; Li, Z.Q.; Li, F. Reconstruction of a helical trimer by the second transmembrane domain of human copper transporter 2 in micelles and the binding of the trimer to silver. RSC Advances, 2016, 6(6), 4335-4342.
[56]
Shehadeh, L.A.; Yu, K.; Wang, L.; Guevara, A.; Singer, C.; Vance, J.; Papapetropoulos, S. SRRM2, a potential blood biomarker revealing high alternative splicing in Parkinson’s disease. PLoS One, 2010, 5(2), e9104.
[57]
Sethi, A.; Tian, J.; Vu, D.M.; Gnanakaran, S. Identification of minimally interacting modules in an intrinsically disordered protein. Biophys. J., 2012, 103(4), 748-757.
[58]
Uversky, V.N.; Oldfield, C.J.; Dunker, A.K. In Annual Review of Biophysics. Annual Reviews: Palo Alto, 2008, 37, 215-246.
[59]
Binolfi, A.; Valiente-Gabioud, A.A.; Duran, R.; Zweckstetter, M.; Griesinger, C.; Fernandez, C.O. Exploring the structural details of Cu(I) binding to α-synuclein by NMR spectroscopy. J. Am. Chem. Soc., 2011, 133(2), 194-196.
[60]
Binolfi, A.; Quintanar, L.; Bertoncini, C.W.; Griesinger, C.; Fernandez, C.O. Bioinorganic chemistry of copper coordination to alpha-synuclein: Relevance to Parkinson’s disease. Coord. Chem. Rev., 2012, 256(19-20), 2188-2201.
[61]
Gralka, E.; Valensin, D.; Porciatti, E.; Gajda, C.; Gaggelli, E.; Valensin, G.; Kamysz, W.; Nadolny, R.; Guerrini, R.; Bacco, D.; Remelli, M.; Kozlowski, H. CuII binding sites located at His-96 and His-111 of the human prion protein: thermodynamic and spectroscopic studies on model peptides. Dalton Trans., 2008, (38), 5207-5219.
[62]
Berti, F.; Gaggelli, E.; Guerrini, R.; Janicka, A.; Kozlowski, H.; Legowska, A.; Miecznikowska, H.; Migliorini, C.; Pogni, R.; Remelli, M.; Rolka, K.; Valensin, D.; Valensin, G. Structural and dynamic characterization of copper(II) binding of the human prion protein outside the octarepeat region. Chemistry, 2007, 13(7), 1991-2001.
[63]
Remelli, M.; Valensin, D.; Toso, L.; Gralka, E.; Guerrini, R.; Marzola, E.; Kozłowski, H. Thermodynamic and spectroscopic investigation on the role of Met residues in Cu(II) binding to the non-octarepeat site of the human prion protein. Metallomics, 2012, 4(8), 794-806.
[64]
Shearer, J.; Soh, P. The copper(II) adduct of the unstructured region of the amyloidogenic fragment derived from the human prion protein is redox-active at physiological pH. Inorg. Chem., 2007, 46(3), 710-719.
[65]
D’Angelo, P.; Della Longa, S.; Arcovito, A.; Mancini, G.; Zitolo, A.; Chillemi, G.; Giachin, G.; Legname, G.; Benetti, F. Effects of the pathological Q212P mutation on human prion protein non-octarepeat copper-binding site. Biochemistry, 2012, 51(31), 6068-6079.
[66]
Palacios, O.; Atrian, S.; Capdevila, M. Zn- and Cu-thioneins: a functional classification for metallothioneins? J. Biol. Inorg. Chem., 2011, 16(7), 991-1009.
[67]
Stillman, M.J. METALLOTHIONEINS. Coord. Chem. Rev., 1995, 144, 461-511.
[68]
Zhu, Z.; DeRose, E.F.; Mullen, G.P.; Petering, D.H.; Shaw, C.F. III Sequential proton resonance assignments and metal cluster topology of lobster metallothionein-1. Biochemistry, 1994, 33(30), 8858-8865.
[69]
Delangle, P.; Mintz, E. Chelation therapy in Wilson’s disease: from D-penicillamine to the design of selective bioinspired intracellular Cu(I) chelators. Dalton Trans., 2012, 41(21), 6359-6370.
[70]
Peterson, C.W.; Narula, S.S.; Armitage, I.M. 3D solution structure of copper and silver-substituted yeast metallothioneins. FEBS Lett., 1996, 379(1), 85-93.
[71]
Zelazowski, A.J.; Szymanska, J.A.; Law, A.Y.C.; Stillman, M.J. Spectroscopic properties of the alpha fragment of metallothionein. J. Biol. Chem., 1984, 259(21), 12960-12963.
[72]
Palacios, O.; Polec-Pawlak, K.; Lobinski, R.; Capdevila, M.; González-Duarte, P. Is Ag(I) an adequate probe for Cu(I) in structural copper-metallothionein studies? The binding features of Ag(I) to mammalian metallothionein 1. J. Biol. Inorg. Chem., 2003, 8(8), 831-842.
[73]
Bertini, I.; Hartmann, H.J.; Klein, T.; Liu, G.; Luchinat, C.; Weser, U. High resolution solution structure of the protein part of Cu7 metallothionein. Eur. J. Biochem., 2000, 267(4), 1008-1018.
[74]
Calderone, V.; Dolderer, B.; Hartmann, H.J.; Echner, H.; Luchinat, C.; Del Bianco, C.; Mangani, S.; Weser, U. The crystal structure of yeast copper thionein: the solution of a long-lasting enigma. Proc. Natl. Acad. Sci. USA, 2005, 102(1), 51-56.
[75]
Hamza, I.; Schaefer, M.; Klomp, L.W.J.; Gitlin, J.D. Interaction of the copper chaperone HAH1 with the Wilson disease protein is essential for copper homeostasis. Proc. Natl. Acad. Sci. USA, 1999, 96(23), 13363-13368.
[76]
Wernimont, A.K.; Huffman, D.L.; Lamb, A.L.; O’Halloran, T.V.; Rosenzweig, A.C. Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins. Nat. Struct. Biol., 2000, 7(9), 766-771.
[77]
Anastassopoulou, I.; Banci, L.; Bertini, I.; Cantini, F.; Katsari, E.; Rosato, A. Solution structure of the apo and copper(I)-loaded human metallochaperone HAH1. Biochemistry, 2004, 43(41), 13046-13053.
[78]
Veronesi, G.; Gallon, T.; Deniaud, A.; Boff, B.; Gateau, C.; Lebrun, C.; Vidaud, C.; Rollin-Genetet, F.; Carrière, M.; Kieffer, I.; Mintz, E.; Delangle, P.; Michaud-Soret, I. XAS Investigation of Silver(I) Coordination in Copper(I) Biological Binding Sites. Inorg. Chem., 2015, 54(24), 11688-11696.
[79]
Rowinska-Zyrek, M.; Witkowska, D.; Bielinska, S.; Kamysz, W.; Kozlowski, H. The -Cys-Cys- motif in Helicobacter pylori’s Hpn and HspA proteins is an essential anchoring site for metal ions. Dalton Trans., 2011, 40(20), 5604-5610.
[80]
Tordi, M.G.; Silvestrini, M.C.; Adzamli, K.; Brunori, M. Kinetics of Pseudomonas aeruginosa cytochrome c551 and cytochrome oxidase oxidation by Co(phen)3(3+) and Mn(CyDTA)(H2O)-. J. Inorg. Biochem., 1987, 30(3), 155-166.
[81]
Adman, E.T.; Canters, G.W.; Hill, H.A.O.; Kitchen, N.A. The effect of pH and temperature on the structure of the active site of azurin from Pseudomonas aeruginosa. FEBS Lett., 1982, 143(2), 287-292.
[82]
Bellina, B.; Compagnon, I.; MacAleese, L.; Chirot, F.; Lemoine, J.; Maître, P.; Broyer, M.; Antoine, R.; Kulesza, A.; Mitrić, R.; Bonačić-Koutecký, V.; Dugourd, P. Binding motifs of silver in prion octarepeat model peptides: a joint ion mobility, IR and UV spectroscopies, and theoretical approach. Phys. Chem. Chem. Phys., 2012, 14(32), 11433-11440.
[83]
Alexander, J.W. History of the medical use of silver. Surg. Infect. (Larchmt.), 2009, 10(3), 289-292.
[84]
Mijnendonckx, K.; Leys, N.; Mahillon, J.; Silver, S.; Van Houdt, R. Antimicrobial silver: uses, toxicity and potential for resistance. Biometals, 2013, 26(4), 609-621.
[85]
Chopra, I. The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J. Antimicrob. Chemother., 2007, 59(4), 587-590.
[86]
Li, L.H.; Yen, M.Y.; Ho, C.C.; Wu, P.; Wang, C.C.; Maurya, P.K.; Chen, P.S.; Chen, W.; Hsieh, W.Y.; Chen, H.W. Non-cytotoxic nanomaterials enhance antimicrobial activities of cefmetazole against multidrug-resistant Neisseria gonorrhoeae. PLoS One, 2013, 8(5), e64794.
[87]
Zhao, G.; Stevens, S.E. Jr Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals, 1998, 11(1), 27-32.
[88]
Walker, M.; Parsons, D. The biological fate of silver ions following the use of silver-containing wound care products - a review. Int. Wound J., 2014, 11(5), 496-504.
[89]
Leaper, D.J. Silver dressings: their role in wound management. Int. Wound J., 2006, 3(4), 282-294.
[90]
Velmurugan, P.; Lee, S.M.; Cho, M.; Park, J.H.; Seo, S.K.; Myung, H.; Bang, K.S.; Oh, B.T. Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria. Appl. Microbiol. Biotechnol., 2014, 98(19), 8179-8189.
[91]
Xu, Z.; Mahalingam, S.; Rohn, J.L.; Ren, G.; Edirisinghe, M. Physio-chemical and antibacterial characteristics of pressure spun nylon nanofibres embedded with functional silver nanoparticles. Mater. Sci. Eng. C, 2015, 56, 195-204.
[92]
Hsueh, Y.H.; Lin, K.S.; Ke, W.J.; Hsieh, C.T.; Chiang, C.L.; Tzou, D.Y.; Liu, S.T. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions. PLoS One, 2015, 10(12), e0144306.
[93]
Kim, J.; Kim, S.; Lee, S. Differentiation of the toxicities of silver nanoparticles and silver ions to the Japanese medaka (Oryzias latipes) and the cladoceran Daphnia magna. Nanotoxicology, 2011, 5(2), 208-214.
[94]
Jiravova, J.; Tomankova, K.B.; Harvanova, M.; Malina, L.; Malohlava, J.; Luhova, L.; Panacek, A.; Manisova, B.; Kolarova, H. The effect of silver nanoparticles and silver ions on mammalian and plant cells in vitro. Food Chem. Toxicol., 2016, 96, 50-61.
[95]
Low, W.L.; Kenward, M.A.; Hill, D.J.; Martin, C. Characterisation and in vitro antimicrobial potential of liposome encapsulated silver ions against Candida albicans. J. Microencapsul., 2016, 33(2), 146-152.
[96]
Slawson, R.M.; Van Dyke, M.I.; Lee, H.; Trevors, J.T. Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid, 1992, 27(1), 72-79.
[97]
Park, K. . Toxicokinetic differences and toxicities of silver nanoparticles and silver ions in rats after single oral administration.Journal of Toxicology and Environmental Health-Part a-Current Issues, 2013, 76(22), 1246-1260.
[98]
Belluco, S.; Losasso, C.; Patuzzi, I.; Rigo, L.; Conficoni, D.; Gallocchio, F.; Cibin, V.; Catellani, P.; Segato, S.; Ricci, A. Silver As Antibacterial toward Listeria monocytogenes. Front. Microbiol., 2016, 7, 307.
[99]
Ivask, A.; Elbadawy, A.; Kaweeteerawat, C.; Boren, D.; Fischer, H.; Ji, Z.; Chang, C.H.; Liu, R.; Tolaymat, T.; Telesca, D.; Zink, J.I.; Cohen, Y.; Holden, P.A.; Godwin, H.A. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano, 2014, 8(1), 374-386.
[100]
Joshi, N.; Ngwenya, B.T.; Butler, I.B.; French, C.E. Use of bioreporters and deletion mutants reveals ionic silver and ROS to be equally important in silver nanotoxicity. J. Hazard. Mater., 2015, 287, 51-58.
[101]
Chambers, B.A.; Afrooz, A.R.; Bae, S.; Aich, N.; Katz, L.; Saleh, N.B.; Kirisits, M.J. Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environ. Sci. Technol., 2014, 48(1), 761-769.
[102]
Swathy, J.R.; Sankar, M.U.; Chaudhary, A.; Aigal, S. Anshup; Pradeep, T., Antimicrobial silver: An unprecedented anion effect. Sci. Rep., 2014, 4.
[103]
Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res., 2000, 52(4), 662-668.
[104]
Slawson, R.M.; Lee, H.; Trevors, J.T. Bacterial interactions with silver. Biol. Met., 1990, 3(3-4), 151-154.
[105]
Lim, P.N.; Chang, L.; Tay, B.Y.; Guneta, V.; Choong, C.; Ho, B.; Thian, E.S. Proposed mechanism of antibacterial action of chemically modified apatite for reduced bone infection. ACS Appl. Mater. Interfaces, 2014, 6(19), 17082-17092.
[106]
Saulou, C.; Jamme, F.; Girbal, L.; Maranges, C.; Fourquaux, I.; Cocaign-Bousquet, M.; Dumas, P.; Mercier-Bonin, M. Synchrotron FTIR microspectroscopy of Escherichia coli at single-cell scale under silver-induced stress conditions. Anal. Bioanal. Chem., 2013, 405(8), 2685-2697.
[107]
Bovenkamp, G.L.; Zanzen, U.; Krishna, K.S.; Hormes, J.; Prange, A. X-ray absorption near-edge structure (XANES) spectroscopy study of the interaction of silver ions with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli. Appl. Environ. Microbiol., 2013, 79(20), 6385-6390.
[108]
Dibrov, P.; Dzioba, J.; Gosink, K.K.; Häse, C.C. Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae. Antimicrob. Agents Chemother., 2002, 46(8), 2668-2670.
[109]
Holt, K.B.; Bard, A.J. Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry, 2005, 44(39), 13214-13223.
[110]
Saulou-Bérion, C.; Gonzalez, I.; Enjalbert, B.; Audinot, J.N.; Fourquaux, I.; Jamme, F.; Cocaign-Bousquet, M.; Mercier-Bonin, M.; Girbal, L. Escherichia coli under Ionic Silver Stress: An Integrative Approach to Explore Transcriptional, Physiological and Biochemical Responses. PLoS One, 2015, 10(12), e0145748.
[111]
Kandeel, A.; Abu-Elmagd, K.; Spinner, M.; Khanna, A.; Hashimoto, K.; Fujiki, M.; Parsi, M.; Bennett, A.; El-Gazzaz, G.; Abd-Elaal, A. Atypical Clinical Presentation of a Newer Generation Anti-Fungal Drug-Resistant Fusarium Infection After a Modified Multi-Visceral Transplant. Ann. Transplant., 2015, 20, 512-518.
[112]
Goss, J.A.; Shackleton, C.R.; McDiarmid, S.V.; Maggard, M.; Swenson, K.; Seu, P.; Vargas, J.; Martin, M.; Ament, M.; Brill, J.; Harrison, R.; Busuttil, R.W. Long-term results of pediatric liver transplantation: an analysis of 569 transplants. Ann. Surg., 1998, 228(3), 411-420.
[113]
Jung, W.K.; Kim, S.H.; Koo, H.C.; Shin, S.; Kim, J.M.; Park, Y.K.; Hwang, S.Y.; Yang, H.; Park, Y.H. Antifungal activity of the silver ion against contaminated fabric. Mycoses, 2007, 50(4), 265-269.
[114]
Malachova, K.; Praus, P.; Rybkova, Z.; Kozak, O. Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. Appl. Clay Sci., 2011, 53(4), 642-645.
[115]
Monteiro, D.R.; Negri, M.; Silva, S.; Gorup, L.F.; de Camargo, E.R.; Oliveira, R.; Barbosa, D.B.; Henriques, M. Adhesion of Candida biofilm cells to human epithelial cells and polystyrene after treatment with silver nanoparticles. Colloids Surf. B Biointerfaces, 2014, 114, 410-412.
[116]
Lara, H.H.; Romero-Urbina, D.G.; Pierce, C.; Lopez-Ribot, J.L.; Arellano-Jiménez, M.J.; Jose-Yacaman, M. Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J. Nanobiotechnology, 2015, 13, 91.
[117]
Szweda, P.; Gucwa, K.; Kurzyk, E.; Romanowska, E.; Dzierżanowska-Fangrat, K.; Zielińska Jurek, A.; Kuś, P.M.; Milewski, S. Essential Oils, Silver Nanoparticles and Propolis as Alternative Agents Against Fluconazole Resistant Candida albicans, Candida glabrata and Candida krusei Clinical Isolates. Indian J. Microbiol., 2015, 55(2), 175-183.
[118]
Percival, S.L.; Slone, W.; Linton, S.; Okel, T.; Corum, L.; Thomas, J.G. The antimicrobial efficacy of a silver alginate dressing against a broad spectrum of clinically relevant wound isolates. Int. Wound J., 2011, 8(3), 237-243.
[119]
Vagabov, V.M.; Ivanov, A.Y.; Kulakovskaya, T.V.; Kulakovskaya, E.V.; Petrov, V.V.; Kulaev, I.S. Efflux of potassium ions from cells and spheroplasts of Saccharomyces cerevisiae yeast treated with silver and copper ions. Biochemistry (Mosc.), 2008, 73(11), 1224-1227.
[120]
Yang, H.C.; Pon, L.A. Toxicity of metal ions used in dental alloys: a study in the yeast Saccharomyces cerevisiae. Drug Chem. Toxicol., 2003, 26(2), 75-85.
[121]
Wells, T.N.C.; Scully, P.; Paravicini, G.; Proudfoot, A.E.I.; Payton, M.A. Mechanism of irreversible inactivation of phosphomannose isomerases by silver ions and flamazine. Biochemistry, 1995, 34(24), 7896-7903.
[122]
Berners-Price, S.J.; Bowen, R.J.; Galettis, P.; Healy, P.C.; McKeage, M.J. Structural and solution chemistry of gold(I) and silver(I) complexes of bidentate pyridyl phosphines: selective antitumour agents. Coord. Chem. Rev., 1999, 185-6, 823-836.
[123]
Trudu, F.; Amato, F.; Vanhara, P.; Pivetta, T.; Pena-Mendez, E.M.; Havel, J. Coordination compounds in cancer: Past, present and perspectives. J. Appl. Biomed., 2015, 13(2), 79-103.
[124]
Teyssot, M.L.; Jarrousse, A.S.; Manin, M.; Chevry, A.; Roche, S.; Norre, F.; Beaudoin, C.; Morel, L.; Boyer, D.; Mahiou, R.; Gautier, A. Metal-NHC complexes: a survey of anti-cancer properties. Dalton Trans., 2009, (35), 6894-6902.
[125]
Ceresa, C.; Bravin, A.; Cavaletti, G.; Pellei, M.; Santini, C. The combined therapeutical effect of metal-based drugs and radiation therapy: the present status of research. Curr. Med. Chem., 2014, 21(20), 2237-2265.
[126]
Medici, S.; Peana, M.; Crisponi, G.; Nurchi, V.M.; Lachowicz, J.I.; Remelli, M.; Zoroddu, M.A. 2016.
[127]
Liu, W.; Gust, R. Metal N-heterocyclic carbene complexes as potential antitumor metallodrugs. Chem. Soc. Rev., 2013, 42(2), 755-773.
[128]
Gasser, G.; Ott, I.; Metzler-Nolte, N. Organometallic anticancer compounds. J. Med. Chem., 2011, 54(1), 3-25.
[129]
Medvetz, D.A.; Hindi, K.M.; Panzner, M.J.; Ditto, A.J.; Yun, Y.H.; Youngs, W.J. Anticancer Activity of Ag(I) N-Heterocyclic Carbene Complexes Derived from 4,5-Dichloro-1H-Imidazole. Met. Based Drugs, 2008, 2008, 384010-384010.
[130]
Patil, S.; Deally, A.; Gleeson, B.; Hackenberg, F.; Muller-Bunz, H.; Paradisi, F.; Tacke, M. Synthesis, Cytotoxicity and Antibacterial Studies of Novel Symmetrically and Non-Symmetrically p-Nitrobenzyl-Substituted N-Heterocyclic Carbene-Silver-(I) Acetate Complexes. Z. Anorg. Allg. Chem., 2011, 637(3-4), 386-396.
[131]
Patil, S.; Dietrich, K.; Deally, A.; Gleeson, B.; Muller-Bunz, H.; Paradisi, F.; Tacke, M. Synthesis, Cytotoxicity and Antibacterial Studies of Novel Symmetrically and Nonsymmetrically 4-(Methoxycarbonyl)benzyl-Substituted N-Heterocyclic Carbene-Silver Acetate Complexes. Helv. Chim. Acta, 2010, 93(12), 2347-2364.
[132]
Patil, S.; Claffey, J.; Deally, A.; Hogan, M.; Gleeson, B.; Mendez, L.M.M.; Muller-Bunz, H.; Paradisi, F.; Tacke, M. Synthesis, Cytotoxicity and Antibacterial Studies of p-Methoxybenzyl-Substituted and Benzyl-Substituted N-Heterocyclic Carbene-Silver Complexes. Eur. J. Inorg. Chem., 2010, (7), 1020-1031.
[133]
Patil, S.; Deally, A.; Gleeson, B.; Muller-Bunz, H.; Paradisi, F.; Tacke, M. Synthesis, cytotoxicity and antibacterial studies of symmetrically and non-symmetrically benzyl- or p-cyanobenzyl-substituted N-Heterocyclic carbene-silver complexes. Appl. Organomet. Chem., 2010, 24(11), 781-793.
[134]
Hackenberg, F.; Tacke, M. Benzyl-substituted metallocarbene antibiotics and anticancer drugs. Dalton Trans., 2014, 43(22), 8144-8153.
[135]
Patil, S.; Deally, A.; Gleeson, B.; Müller-Bunz, H.; Paradisi, F.; Tacke, M. Novel benzyl-substituted N-heterocyclic carbene-silver acetate complexes: synthesis, cytotoxicity and antibacterial studies. Metallomics, 2011, 3(1), 74-88.
[136]
Fichtner, I.; Cinatl, J.; Michaelis, M.; Sanders, L.C.; Hilger, R.; Kennedy, B.N.; Reynolds, A.L.; Hackenberg, F.; Lally, G.; Quinn, S.J.; McRae, I.; Tacke, M. In Vitro and In Vivo Investigations into the Carbene Silver Acetate Anticancer Drug Candidate SBC1. Lett. Drug Des. Discov., 2012, 9(9), 815-822.
[137]
Iqbal, M.A.; Haque, R.A.; Nasri, S.F.; Majid, A.A.; Ahamed, M.B.K.; Farsi, E.; Fatima, T. Potential of silver against human colon cancer: (synthesis, characterization and crystal structures of xylyl (Ortho, meta, &Para) linked bis-benzimidazolium salts and Ag(I)-NHC complexes: In vitro anticancer studies). Chem. Cent. J., 2013, 7(1), 27.
[138]
Iqbal, M.A.; Haque, R. A.; Ahamed, M., B., K.; Majid, A., AMS. Biochem. Anal. Biochem., 2014, 3, 1-6.
[139]
Haque, R.A.; Choo, S.Y.; Budagumpi, S.; Iqbal, M.A.; Al-Ashraf Abdullah, A. Silver(I) complexes of mono- and bidentate N-heterocyclic carbene ligands: synthesis, crystal structures, and in vitro antibacterial and anticancer studies. Eur. J. Med. Chem., 2015, 90, 82-92.
[140]
Iqbal, M.A.; Umar, M.I.; Haque, R.A.; Khadeer Ahamed, M.B.; Asmawi, M.Z.; Majid, A.M. Macrophage and colon tumor cells as targets for a binuclear silver(I) N-heterocyclic carbene complex, an anti-inflammatory and apoptosis mediator. J. Inorg. Biochem., 2015, 146, 1-13.
[141]
Haque, R.A.; Ghdhayeb, M.Z.; Budagumpi, S.; Ahamed, M.B.K.; Majid, A. Synthesis, crystal structures, and in vitro anticancer properties of new N-heterocyclic carbene (NHC) silver(I)- and gold(I)/(III)-complexes: a rare example of silver(I)-NHC complex involved in redox transmetallation. RSC Advances, 2016, 6(65), 60407-60421.
[142]
Pellei, M.; Gandin, V.; Marinelli, M.; Marzano, C.; Yousufuddin, M.; Dias, H.V.R.; Santini, C. Synthesis and biological activity of ester- and amide-functionalized imidazolium salts and related water-soluble coinage metal N-heterocyclic carbene complexes. Inorg. Chem., 2012, 51(18), 9873-9882.
[143]
Zhang, D.; Xu, Z.; Yuan, J.; Zhao, Y.X.; Qiao, Z.Y.; Gao, Y.J.; Yu, G.A.; Li, J.; Wang, H. Synthesis and molecular recognition studies on small-molecule inhibitors for thioredoxin reductase. J. Med. Chem., 2014, 57(19), 8132-8139.
[144]
Marzano, C.; Gandin, V.; Folda, A.; Scutari, G.; Bindoli, A.; Rigobello, M.P. Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatin-resistant human ovarian cancer cells. Free Radic. Biol. Med., 2007, 42(6), 872-881.
[145]
Gandin, V.; Pellei, M.; Marinelli, M.; Marzano, C.; Dolmella, A.; Giorgetti, M.; Santini, C. Synthesis and in vitro antitumor activity of water soluble sulfonate- and ester-functionalized silver(I) N-heterocyclic carbene complexes. J. Inorg. Biochem., 2013, 129, 135-144.
[146]
Marinelli, M.; Pellei, M.; Cimarelli, C.; Dias, H.V.R.; Marzano, C.; Tisato, F.; Porchia, M.; Gandin, V.; Santini, C. Novel multicharged silver(I)-NHC complexes derived from zwitterionic 1,3-symmetrically and 1,3-unsymmetrically substituted imidazoles and benzimidazoles: Synthesis and cytotoxic properties. J. Organomet. Chem., 2016, 806, 45-53.
[147]
Li, Y.; Liu, G.F.; Tan, C.P.; Ji, L.N.; Mao, Z.W. Antitumor properties and mechanisms of mitochondria-targeted Ag(I) and Au(I) complexes containing N-heterocyclic carbenes derived from cyclophanes. Metallomics, 2014, 6(8), 1460-1468.
[148]
Wang, C.H.; Shih, W.C.; Chang, H.C.; Kuo, Y.Y.; Hung, W.C.; Ong, T.G.; Li, W.S. Preparation and characterization of amino-linked heterocyclic carbene palladium, gold, and silver complexes and their use as anticancer agents that act by triggering apoptotic cell death. J. Med. Chem., 2011, 54(14), 5245-5249.
[149]
Mohamed, H.A.; Lake, B.R.M.; Laing, T.; Phillips, R.M.; Willans, C.E. Synthesis and anticancer activity of silver(I)-N-heterocyclic carbene complexes derived from the natural xanthine products caffeine, theophylline and theobromine. Dalton Trans., 2015, 44(16), 7563-7569.
[150]
Berners-Price, S.J.; Johnson, R.K.; Giovenella, A.J.; Faucette, L.F.; Mirabelli, C.K.; Sadler, P.J. Antimicrobial and anticancer activity of tetrahedral, chelated, diphosphine silver(I) complexes: comparison with copper and gold. J. Inorg. Biochem., 1988, 33(4), 285-295.
[151]
Berners-Price, S.J.; Bowen, R.J.; Harvey, P.J.; Healy, P.C.; Koutsantonis, G.A. Silver(I) nitrate adducts with bidentate 2-, 3- and 4-pyridyl phosphines. Solution P-31 and P-31-Ag-109 NMR studies of 1: 2 complexes and crystal structure of dimeric Ag(d2pype)(mu-d2pype)(2) - NO3 (2)center dot 2CH(2)Cl(2) d2pype = 1,2-bis(di-2-pyridylphosphino)ethane. J. Chem. Soc., Dalton Trans., 1998, 11, 1743-1750.
[152]
Liu, J.J.; Galettis, P.; Farr, A.; Maharaj, L.; Samarasinha, H.; McGechan, A.C.; Baguley, B.C.; Bowen, R.J.; Berners-Price, S.J.; McKeage, M.J. In vitro antitumour and hepatotoxicity profiles of Au(I) and Ag(I) bidentate pyridyl phosphine complexes and relationships to cellular uptake. J. Inorg. Biochem., 2008, 102(2), 303-310.
[153]
Zartilas, S.; Hadjikakou, S.K.; Hadjiliadis, N.; Kourkoumelis, N.; Kyros, L.; Kubicki, M.; Baril, M.; Butler, I.S.; Karkabounas, S.; Balzarini, J. Tetrameric 1:1 and monomeric 1:3 complexes of silver(I) halides with tri(p-tolyl)-phosphine: A structural and biological study. Inorg. Chim. Acta, 2009, 362(3), 1003-1010.
[154]
Yilmaz, V.T.; Gocmen, E.; Icsel, C.; Cengiz, M.; Susluer, S.Y.; Buyukgungor, O. Di- and polynuclear silver(I) saccharinate complexes of tertiary diphosphane ligands: synthesis, structures, in vitro DNA binding, and antibacterial and anticancer properties. J. Biol. Inorg. Chem., 2014, 19(1), 29-44.
[155]
Ortego, L.; Meireles, M.; Kasper, C.; Laguna, A.; Villacampa, M.D.; Gimeno, M.C. Group 11 complexes with amino acid derivatives: Synthesis and antitumoral studies. J. Inorg. Biochem., 2016, 156, 133-144.
[156]
Hadjikakou, S.K.; Ozturk, I.I.; Xanthopoulou, M.N.; Zachariadis, P.C.; Zartilas, S.; Karkabounas, S.; Hadjiliadis, N. Synthesis, structural characterization and biological study of new organotin(IV), silver(I) and antimony(III) complexes with thioamides. J. Inorg. Biochem., 2008, 102(5-6), 1007-1015.
[157]
Human, Z.; Munyaneza, A.; Omondi, B.; Sanabria, N.M.; Meijboom, R.; Cronjé, M.J. The induction of cell death by phosphine silver(I) thiocyanate complexes in SNO-esophageal cancer cells. Biometals, 2015, 28(1), 219-228.
[158]
Ferreira, E.; Munyaneza, A.; Omondi, B.; Meijboom, R.; Cronjé, M.J. The effect of 1:2 Ag(I) thiocyanate complexes in MCF-7 breast cancer cells. Biometals, 2015, 28(4), 765-781.
[159]
Kyros, L.; Kourkoumelis, N.; Kubicki, M.; Male, L.; Hursthouse, M.B.; Verginadis, I.I.; Gouma, E.; Karkabounas, S.; Charalabopoulos, K.; Hadjikakou, S.K. Structural properties, cytotoxicity, and anti-inflammatory activity of silver(I) complexes with tris(p-tolyl)phosphine and 5-chloro-2-mercaptobenzothiazole. Bioinorg. Chem. Appl., 2010, 386860.
[160]
O’Connor, M.; Kellett, A.; McCann, M.; Rosair, G.; McNamara, M.; Howe, O.; Creaven, B.S.; McClean, S.; Kia, A.F.A.; O’Shea, D.; Devereux, M. Copper(II) complexes of salicylic acid combining superoxide dismutase mimetic properties with DNA binding and cleaving capabilities display promising chemotherapeutic potential with fast acting in vitro cytotoxicity against cisplatin sensitive and resistant cancer cell lines. J. Med. Chem., 2012, 55(5), 1957-1968.
[161]
Dannenberg, A.J.; Subbaramaiah, K. Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell, 2003, 4(6), 431-436.
[162]
Coyle, B.; McCann, M.; Kavanagh, K.; Devereux, M.; McKee, V.; Kayal, N.; Egan, D.; Deegan, C.; Finn, G.J. Synthesis, X-ray crystal structure, anti-fungal and anti-cancer activity of [Ag2(NH3)2(salH)2] (salH2=salicylic acid). J. Inorg. Biochem., 2004, 98(8), 1361-1366.
[163]
Poyraz, M.; Banti, C.N.; Kourkoumelis, N.; Dokorou, V.; Manos, M.J.; Simcic, M.; Golic-Grdadolnik, S.; Mavromoustakos, T.; Giannoulis, A.D.; Verginadis, I.; Charalabopoulos, K.; Hadjikakou, S.K. Synthesis, structural characterization and biological studies of novel mixed ligand Ag(I) complexes with triphenylphosphine and aspirin or salicylic acid. Inorg. Chim. Acta, 2011, 375(1), 114-121.
[164]
Banti, C.N.; Giannoulis, A.D.; Kourkoumelis, N.; Owczarzak, A.M.; Poyraz, M.; Kubicki, M.; Charalabopoulos, K.; Hadjikakou, S.K. Mixed ligand-silver(I) complexes with anti-inflammatory agents which can bind to lipoxygenase and calf-thymus DNA, modulating their function and inducing apoptosis. Metallomics, 2012, 4(6), 545-560.
[165]
Banti, C.N.; Giannoulis, A.D.; Kourkoumelis, N.; Owczarzak, A.M.; Kubicki, M.; Hadjikakou, S.K. Silver(I) compounds of the anti-inflammatory agents salicylic acid and p-hydroxyl-benzoic acid which modulate cell function. J. Inorg. Biochem., 2015, 142, 132-144.
[166]
Banti, C.N.; Giannoulis, A.D.; Kourkoumelis, N.; Owczarzak, A.M.; Kubicki, M.; Hadjikakou, S.K. Novel metallo-therapeutics of the NSAID naproxen. Interaction with intracellular components that leads the cells to apoptosis. Dalton Trans., 2014, 43(18), 6848-6863.
[167]
Banti, C.N.; Papatriantafyllopoulou, C.; Manoli, M.; Tasiopoulos, A.J.; Hadjikakou, S.K. Nimesulide Silver Metallodrugs, Containing the Mitochondriotropic, Triaryl Derivatives of Pnictogen; Anticancer Activity against Human Breast Cancer Cells. Inorg. Chem., 2016, 55(17), 8681-8696.
[168]
Păunescu, E.; McArthur, S.; Soudani, M.; Scopelliti, R.; Dyson, P.J. Nonsteroidal Anti-inflammatory-Organometallic Anticancer Compounds. Inorg. Chem., 2016, 55(4), 1788-1808.
[169]
Fourie, E.; Erasmus, E.; Swarts, J.C.; Tuchscherer, A.; Jakob, A.; Lang, H.; Joone, G.K.; Van Rensburg, C.E.J. Cytotoxicity of Hydrophylic Silver Carboxylato Complexes (vol 32, pg 519, 2012). Anticancer Res., 2012, 32(11), 5136-5136.
[170]
Thornton, L.; Dixit, V.; Assad, L.O.N.; Ribeiro, T.P.; Queiroz, D.D.; Kellett, A.; Casey, A.; Colleran, J.; Pereira, M.D.; Rochford, G.; McCann, M.; O’Shea, D.; Dempsey, R.; McClean, S.; Kia, A.F.A.; Walsh, M.; Creaven, B.; Howe, O.; Devereux, M. Water-soluble and photo-stable silver(I) dicarboxylate complexes containing 1,10-phenanthroline ligands: Antimicrobial and anticancer chemotherapeutic potential, DNA interactions and antioxidant activity. J. Inorg. Biochem., 2016, 159, 120-132.
[171]
McCann, M.; Coyle, B.; McKay, S.; McCormack, P.; Kavanagh, K.; Devereux, M.; McKee, V.; Kinsella, P.; O’Connor, R.; Clynes, M. Synthesis and X-ray crystal structure of [Ag(phendio)2]ClO4 (phendio = 1,10-phenanthroline-5,6-dione) and its effects on fungal and mammalian cells. Biometals, 2004, 17(6), 635-645.
[172]
Mujahid, M.; Kia, A.F.A.; Duff, B.; Egan, D.A.; Devereux, M.; McClean, S.; Walsh, M.; Trendafilova, N.; Georgieva, I.; Creaven, B.S. Spectroscopic studies, DFT calculations, and cytotoxic activity of novel silver(I) complexes of hydroxy ortho-substituted-nitro-2H-chromen-2-one ligands and a phenanthroline adduct. J. Inorg. Biochem., 2015, 153, 103-113.
[173]
Fik, M.A.; Gorczynski, A.; Kubicki, M.; Hnatejko, Z.; Fedoruk-Wyszomirska, A.; Wyszko, E.; Giel-Pietraszuk, M.; Patroniak, V. 6,6 “-Dimethyl-2,2 ':6 ',2 “-terpyridine revisited: New fluorescent silver(I) helicates with in vitro antiproliferative activity via selective nucleoli targeting. Eur. J. Med. Chem., 2014, 86, 456-468.
[174]
Zachariadis, P.C.; Hadjikakou, S.K.; Hadjiliadis, N.; Skoulika, S.; Michaelides, A.; Balzarini, J.; De Clercq, E. Synthesis, characterization and in vitro study of the cytostatic and antiviral activity of new polymeric silver(I) complexes with ribbon structures derived from the conjugated heterocyclic thioamide 2-mercapto-3,4,5,6-tetrahydropyrimidine. Eur. J. Inorg. Chem., 2004, (7), 1420-1426.
[175]
Smoleński, P.; Jaros, S.W.; Pettinari, C.; Lupidi, G.; Quassinti, L.; Bramucci, M.; Vitali, L.A.; Petrelli, D.; Kochel, A.; Kirillov, A.M. New water-soluble polypyridine silver(I) derivatives of 1,3,5-triaza-7-phosphaadamantane (PTA) with significant antimicrobial and antiproliferative activities. Dalton Trans., 2013, 42(18), 6572-6581.
[176]
Pileni, M. Nanosized particles made in colloidal assemblies. Langmuir, 1997, 13(13), 3266-3276.
[177]
Honary, S.; Ghajar, K.; Khazaeli, P.; Shalchian, P. Preparation, Characterization and Antibacterial Properties of Silver-Chitosan Nanocomposites Using Different Molecular Weight Grades of Chitosan. Trop. J. Pharm. Res., 2011, 10(1), 69-74.
[178]
Santos, K.; Elias, W.; Signori, A.; Giacomelli, F.; Yang, H.; Domingos, J. Synthesis and Catalytic Properties of Silver Nanoparticle-Linear Polyethylene Imine Colloidal Systems. J. Phys. Chem. C, 2012, 116(7), 4594-4604.
[179]
Gittins, D.; Bethell, D.; Nichols, R.; Schiffrin, D. Diode-like electron transfer across nanostructured films containing a redox ligand. J. Mater. Chem., 2000, 10(1), 79-83.
[180]
Kate, K.H.; Damkale, S.R.; Khanna, P.K.; Jain, G.H. Nano-silver mediated polymerization of pyrrole: synthesis and gas sensing properties of polypyrrole (PPy)/Ag nano-composite. J. Nanosci. Nanotechnol., 2011, 11(9), 7863-7869.
[181]
Schultz, S.; Smith, D.R.; Mock, J.J.; Schultz, D.A. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. USA, 2000, 97(3), 996-1001.
[182]
Eckhardt, S.; Brunetto, P.S.; Gagnon, J.; Priebe, M.; Giese, B.; Fromm, K.M. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem. Rev., 2013, 113(7), 4708-4754.
[183]
Nair, L.; Laurencin, C. Silver nanoparticles: Synthesis and therapeutic applications. J. Biomed. Nanotechnol., 2007, 3(4), 301-316.
[184]
Wang, J.; Lu, Z.; Gao, Y.; Wientjes, M.G.; Au, J.L. Improving delivery and efficacy of nanomedicines in solid tumors: role of tumor priming. Nanomedicine (Lond.), 2011, 6(9), 1605-1620.
[185]
Mohanty, S.; Mishra, S.; Jena, P.; Jacob, B.; Sarkar, B.; Sonawane, A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomedicine (Lond.), 2012, 8(6), 916-924.
[186]
Martínez-Gutierrez, F.; Thi, E.P.; Silverman, J.M.; de Oliveira, C.C.; Svensson, S.L.; Vanden Hoek, A.; Sánchez, E.M.; Reiner, N.E.; Gaynor, E.C.; Pryzdial, E.L.; Conway, E.M.; Orrantia, E.; Ruiz, F.; Av-Gay, Y.; Bach, H. Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine (Lond.), 2012, 8(3), 328-336.
[187]
Velmurugan, P.; Iydroose, M.; Mohideen, M.H.; Mohan, T.S.; Cho, M.; Oh, B.T. Biosynthesis of silver nanoparticles using Bacillus subtilis EWP-46 cell-free extract and evaluation of its antibacterial activity. Bioprocess Biosyst. Eng., 2014, 37(8), 1527-1534.
[188]
Willner, I.; Baron, R.; Willner, B. Growing metal nanoparticles by enzymes. Adv. Mater., 2006, 18(9), 1109-1120.
[189]
Velmurugan, P.; Cho, M.; Lim, S.; Seo, S.; Myung, H.; Bang, K.; Sivakumar, S.; Cho, K.; Oh, B. Phytosynthesis of silver nanoparticles by Prunus yedoensis leaf extract and their antimicrobial activity. Mater. Lett., 2015, 138, 272-275.
[190]
Ayodhya, D.; Veerabhadram, G. Green synthesis, characterization, photocatalytic, fluorescence and antimicrobial activities of Cochlospermum gossypium capped Ag2S nanoparticles. J. Photochem. Photobiol. B, 2016, 157, 57-69.
[191]
Du, J.; Yi, T. Biosynthesis of silver nanoparticles by Variovorax guangxiensis THG-SQL3 and their antimicrobial potential. Mater. Lett., 2016, 178, 75-78.
[192]
Patra, J.K.; Das, G.; Baek, K.H. Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy. J. Photochem. Photobiol. B, 2016, 161, 200-210.
[193]
Lee, J-H.; Lim, J-M.; Velmurugan, P.; Park, Y-J.; Park, Y-J.; Bang, K-S.; Oh, B-T. Photobiologic-mediated fabrication of silver nanoparticles with antibacterial activity. J. Photochem. Photobiol. B, 2016, 162, 93-99.
[194]
Sathishkumar, P.; Preethi, J.; Vijayan, R.; Mohd Yusoff, A.R.; Ameen, F.; Suresh, S.; Balagurunathan, R.; Palvannan, T. Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using Coriandrum sa-tivum leaf extract. J. Photochem. Photobiol. B, 2016, 163, 69-76.
[195]
Jogee, P.S.; Ingle, A.P.; Rai, M. Isolation and identification of toxigenic fungi from infected peanuts and efficacy of silver nanoparticles against them. Food Control, 2017, 71, 143-151.
[196]
Tutaj, K.; Szlazak, R.; Szalapata, K.; Starzyk, J.; Luchowski, R.; Grudzinski, W.; Osinska-Jaroszuk, M.; Jarosz-Wilkolazka, A.; Szuster-Ciesielska, A.; Gruszecki, W.I. Amphotericin B-silver hybrid nanoparticles: synthesis, properties and antifungal activity. Nanomedicine (Lond.), 2016, 12(4), 1095-1103.
[197]
Akram, F.E.; El-Tayeb, T.; Abou-Aisha, K.; El-Azizi, M. A combination of silver nanoparticles and visible blue light enhances the antibacterial efficacy of ineffective antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). Ann. Clin. Microbiol. Antimicrob., 2016, 15(1), 48.
[198]
Cunha, A. C.; Chierrito, T.P.; Machado, G.M.; Leon, L.L.; da Silva, C.C.; Tanaka, J.C.; de Souza, L.M.; Gonçalves, R.A.; de Oliveira, A.J. Anti-leishmanial activity of alkaloidal extracts obtained from different organs of Aspidosperma ramiflorum. Phytomedicine, 2012, 19(5), 413-417.
[199]
Murray, H.W. Clinical and experimental advances in treatment of visceral leishmaniasis. Antimicrob. Agents Chemother., 2001, 45(8), 2185-2197.
[200]
Lira, R.; Sundar, S.; Makharia, A.; Kenney, R.; Gam, A.; Saraiva, E.; Sacks, D. Evidence that the high incidence of treatment failures in Indian kala-azar is due to the emergence of antimony-resistant strains of Leishmania donovani. J. Infect. Dis., 1999, 180(2), 564-567.
[201]
Sundar, S.; More, D.K.; Singh, M.K.; Singh, V.P.; Sharma, S.; Makharia, A.; Kumar, P.C.; Murray, H.W. Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clin. Infect. Dis., 2000, 31(4), 1104-1107.
[202]
Ahmad, A.; Wei, Y.; Syed, F.; Khan, S.; Khan, G.M.; Tahir, K.; Khan, A.U.; Raza, M.; Khan, F.U.; Yuan, Q. Isatis tinctoria mediated synthesis of amphotericin B-bound silver nanoparticles with enhanced photoinduced antileishmanial activity: A novel green approach. J. Photochem. Photobiol. B, 2016, 161, 17-24.
[203]
Li, P.; Li, J.; Wu, C.; Wu, Q. Synergistic antibacterial effects of beta-lactam antibiotic combined with silver nanoparticles. Nanotechnology, 2005, 16(9), 1912-1917.
[204]
Buszewski, B.; Rafińska, K.; Pomastowski, P.; Walczak, J.; Rogowska, A. Novel aspects of silver nanoparticles functionalization. Colloids and Surfaces A: Physicochem. Eng, 2016, 506, 170-178.
[205]
Jang, S.J.; Yang, I.J.; Tettey, C.O.; Kim, K.M.; Shin, H.M. In-vitro anticancer activity of green synthesized silver nano-particles on MCF-7 human breast cancer cells. Mater. Sci. Eng. C, 2016, 68, 430-435.
[206]
Kovács, D.; Szőke, K.; Igaz, N.; Spengler, G.; Molnár, J.; Tóth, T.; Madarász, D.; Rázga, Z.; Kónya, Z.; Boros, I.M.; Kiricsi, M. Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer. Nanomedicine (Lond.), 2016, 12(3), 601-610.
[207]
Guo, D.; Zhang, J.; Huang, Z.; Jiang, S.; Gu, N. Colloidal silver nanoparticles improve anti-leukemic drug efficacy via amplification of oxidative stress. Colloids Surf. B Biointerfaces, 2015, 126, 198-203.
[208]
Gutarowska, B.; Machnowski, W.; Kowzowicz, L. Antimicrobial activity of textiles with selected dyes and finishing agents used in the textile industry. Fibers Polym., 2013, 14(3), 415-422.
[209]
Borkow, G.; Gabbay, J. Biocidal textiles can help fight nosocomial infections. Med. Hypotheses, 2008, 70(5), 990-994.
[210]
Kang, C.K.; Kim, S.S.; Kim, S.; Lee, J.; Lee, J.H.; Roh, C.; Lee, J. Antibacterial cotton fibers treated with silver nanoparticles and quaternary ammonium salts. Carbohydr. Polym., 2016, 151, 1012-1018.
[211]
Hanh, T.; Thu, N.; Hien, N.; An, P.; Loan, T.; Hoa, P. Preparation of silver nanoparticles fabrics against multidrug-resistant bacteria. Radiat. Phys. Chem., 2016, 121, 87-92.
[212]
Hebeish, A.; El-Rafie, M.H.; El-Sheikh, M.A.; Seleem, A.A.; El-Naggar, M.E. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int. J. Biol. Macromol., 2014, 65, 509-515.
[213]
Garcia, T.; Lafuente, D.; Blanco, J.; Sánchez, D.J.; Sirvent, J.J.; Domingo, J.L.; Gómez, M. Oral subchronic exposure to silver nanoparticles in rats. Food Chem. Toxicol., 2016, 92, 177-187.
[214]
Munger, M.A.; Radwanski, P.; Hadlock, G.C.; Stoddard, G.; Shaaban, A.; Falconer, J.; Grainger, D.W.; Deering-Rice, C.E. In vivo human time-exposure study of orally dosed commercial silver nanoparticles. Nanomedicine (Lond.), 2014, 10(1), 1-9.
[215]
Lankveld, D.P.; Oomen, A.G.; Krystek, P.; Neigh, A.; Troost-de Jong, A.; Noorlander, C.W.; Van Eijkeren, J.C.; Geertsma, R.E.; De Jong, W.H. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials, 2010, 31(32), 8350-8361.
[216]
Lafuente, D.; Garcia, T.; Blanco, J.; Sánchez, D.J.; Sirvent, J.J.; Domingo, J.L.; Gómez, M. Effects of oral exposure to silver nanoparticles on the sperm of rats. Reprod. Toxicol., 2016, 60, 133-139.
[217]
Yoo, M.H.; Rah, Y.C.; Choi, J.; Park, S.; Park, H.C.; Oh, K.H.; Lee, S.H.; Kwon, S.Y. Embryotoxicity and hair cell toxicity of silver nanoparticles in zebrafish embryos. Int. J. Pediatr. Otorhinolaryngol., 2016, 83(4), 168-174.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy